精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x≤3}\\{-x+4,x>3}\end{array}\right.$,若a<b<c且f(a)=f(b)=f(c),则(ab+2)c的取值范围是(27,81).

分析 利用a<b<c且f(a)=f(b)=f(c),得出ab=1,3<c<4即可求出(ab+2)c的取值范围.

解答 解:由题意,∵f(a)=f(b)=f(c),
∴-log3a=log3b=-c+4
∴ab=1,0<-c+4<1
∴3<c<4
即(ab+2)c的取值范围是(27,81).
故答案为:(27,81).

点评 本题考查分段函数的运用,考查学生的计算能力,正确运用分段函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列四个图象中,能表示y是x的函数图象的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设非负实数x,y满足:$\left\{\begin{array}{l}{y≥x-1}\\{2x+y≤5}\end{array}\right.$,(2,1)是目标函数z=ax+3y(a>0)取最大值的最优解,则a的取值范围是(  )
A.(0,6)B.(0,6]C.[6,+∞)D.(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=2cos(x-$\frac{π}{3}$)($\frac{6}{π}$≤x≤$\frac{2π}{3}$)的最小值和最大值分别是1,2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2-1,g(x)=$\left\{\begin{array}{l}{x-1,x>0}\\{2-x,x<0}\end{array}\right.$
(1)求g(g(x))和g(f(x))的值;
(2)求f(g(x))和g(f(x))的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=4x-2x+1
(1)求函数f(x)的单调递增区间.
(2)若x∈[-2,2],求函数y=logaf(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{{-2}^{x}+b}{{2}^{x+1}+a}$是定义域为R的奇函数.
(1)求f(x)的解析式;
(2)求出函数f(x)的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),F1,F2是其左、右焦点,点P为双曲线的右支上一点,点M为圆心,圆M为三角形PF1F2的内切圆,PM所在直线与x轴的交点坐标为(1,0),与双曲线的一条渐近线平行且距离为$\frac{\sqrt{2}}{2}$,则双曲线C的离心率是(  )
A.$\sqrt{5}$B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x1=3-2i是实系数一元二次方程x2+px+q=0的一个根.
(1)求方程的另一个根及p、q的值;
(2)求x12+x22的值;
(3)求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的值;
(4)求x13+x23的值.

查看答案和解析>>

同步练习册答案