精英家教网 > 高中数学 > 题目详情
18.用二分法研究函数f(x)=x3-2x-1的理念时,若零点所在的初始区间为(1,2),则下一个有解区间为(  )
A.(1,2)B.(1.75,2)C.(1.5,2)D.(1,1.5)

分析 构造函数f(x)=x3-2x-1,确定f(1),f(2),f(1.5)的符号,根据零点存在定理,即可得到结论.

解答 解:设函数f(x)=x3-2x-1,
∵f(1)=-2<0,f(2)=3>0,f(1.5)=-$\frac{5}{8}$<0,
∴下一个有根区间是(1.5,2),
故选:C.

点评 本题考查二分法,考查零点存在定理,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(m,1),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若($\overrightarrow{a}$+λ$\overrightarrow{b}$)与$\overrightarrow{b}$垂直,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆M:(x-a)2+y2=4(a>0)与圆N:x2+(y-1)2=1外切,则直线x-y-$\sqrt{2}$=0被圆M截得线段的长度为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.在△ABC中,“A>B”是“sin2A>sin2B”必要不充分条件
C.“若tanα$≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题
D.?x0∈(-∞,0)使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有一个电动玩具,它有一个9×6的长方形(单位:cm)和一个半径为1cm的小圆盘(盘中娃娃脸),他们的连接点为A,E,打开电源,小圆盘沿着长方形内壁,从点A出发不停地滚动(无滑动),如图所示,若此时某人向该长方形盘投掷一枚飞镖,则能射中小圆盘运行区域内的概率为$\frac{40+π}{54}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.要得到y=sin$\frac{x}{2}$的图象,只需将y=cos($\frac{x}{2}$-$\frac{π}{4}$)的图象上的所有点(  )
A.向右平移$\frac{π}{2}$B.向左平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)定义在区间(-1,1)内,对于任意的x,y∈(-1,1)有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且当x<0时,f(x)>0.
(1)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(2)若f(-$\frac{1}{2}$)=1,求方程f(x)+$\frac{1}{2}$=0的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知P,Q为椭圆$\frac{x^2}{2}+{y^2}=1$上的两点,满足PF2⊥QF2,其中F1,F2分别为左右焦点.
(1)求$|\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|$的最小值;
(2)若$(\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}})⊥(\overrightarrow{Q{F_1}}+\overrightarrow{Q{F_2}})$,设直线PQ的斜率为k,求k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.“?x∈[1,2],x2-a≥0“是真命题,则实数a的最大值为1.

查看答案和解析>>

同步练习册答案