精英家教网 > 高中数学 > 题目详情

【题目】设非直角的内角所对边的长分别为,则下列结论正确的是_____(写出所有正确结论的编号).

①“”是“”的充分必要条件

②“”是“”的充分必要条件

③“”是“”的充分必要条件

④“”是“”的充分必要条件

⑤“”是“”的充分必要条件

【答案】①②⑤

【解析】

结合充分条件与必要条件的概念,由正弦定理可判断①;由余弦函数的单调性可判断②;举出反例可判断③,④;由二倍角公式和正弦定理可判断⑤.

由①,利用正弦定理得,故,等价于,反之也成立,所以①正确;

由②,利用函数上单调递减得,等价于,反之也成立,所以②正确;

由③,不能推出,如为锐角,为钝角,虽然有,但由大角对大边得,所以③错误;

由④,不能推出,如时,虽然有,但由大角对大边得,④错误;

由⑤,利用二倍角公式得,∴,故等价于,⑤正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位,然后纵坐标不变,横坐标变为原来的倍,得到的图象,下面四个结论正确的是( )

A. 函数在区间上为增函数

B. 将函数的图象向右平移个单位后得到的图象关于原点对称

C. 是函数图象的一个对称中心

D. 函数上的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年11月15日,我市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:.把年龄落在内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”与“中老年人”的人数之比为.

(1)求图中的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值

(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有的把握认为“中老年人”比“青少年人”更加关注此活动?

关注

不关注

合计

青少年人

15

中老年人

合计

50

50

100

0.050

0.010

0.001

3.841

6.635

10.828

附参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)过点且斜率不为零的直线交曲线 两点,在轴上是否存在定点,使得直线的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是边长为2的等边三角形,底面是菱形,且

证明:

求平面与平面所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中真命题是  

A. 同垂直于一直线的两条直线互相平行

B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱

C. 过空间任一点与两条异面直线都垂直的直线有且只有一条

D. 过球面上任意两点的大圆有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体的顶点分别在两两垂直的三条射线 上,则在下列命题中,错误的是( )

A. 是正三棱锥

B. 直线与平面相交

C. 直线与平面所成的角的正弦值为

D. 异面直线所成角是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中,正确的个数有

①命题均有的否定是:使得

命题为真命题为真的必要不充分条件;

,使是幂函数,且在上是单调递增;

④不过原点的直线方程都可以表示成

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

同步练习册答案