精英家教网 > 高中数学 > 题目详情

【题目】已知三棱柱的底面是正三角形,侧面为菱形,且平面平面分别是的中点.

(I)求证:平面

(II)求证:

(III)求BA1与平面所成角的大小

【答案】(1)见解析.

(2)见解析.

(3).

【解析】分析:(Ⅰ)取的中点,连接.可证明四边形为平行四边形,

所以由线面平行的判定定理可得结果;(II)取的中点,连结,由面面垂直的性质可得平面所以,由菱形的性质结合, 可得从而得平面进而可得结果;(III)连结A1O,由(Ⅱ)知平面所以BA1与平面所成的角在直角三角形中,从而可得结果.

详解

证明:(Ⅰ)取的中点,连接.

因为分别是,的中点,

所以,

又因为

所以

所以四边形为平行四边形,

所以

又因为平面平面

所以∥平面

(Ⅱ)取的中点,连结.

由题意知

又因为平面平面

所以平面

因为平面 所以

因为四边形为菱形,所以

又因为, 所以

所以平面,又平面

所以

(III)连结A1O,由(Ⅱ)知平面

所以BA1与平面所成的角

在直角三角形中,

所以,即BA1与平面所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.

(1)求椭圆的方程;

(2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水仙花经营部每天的房租、水电、人工等固定成本为1000每盆水仙花的进价是10销售单价() ()与日均销售量()的关系如下表,并保证经营部每天盈利

20

35

40

50

400

250

200

100

20

35

40

50

400

250

200

100

(Ⅰ) 在所给的坐标图纸中根据表中提供的数据描出实数对的对应点并确定的函数关系式

(Ⅱ)求出的值并解释其实际意义

(Ⅲ)请写出该经营部的日销售利润的表达式并回答该经营部怎样定价才能获最大日销售利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高级中学今年高一年级招收“国际班”学生人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:

第一批次

第二批次

第三批次

已知在这名学生中随机抽取名,抽到第一批次、第二批次中女学生的概率分别是.

(1)求的值;

(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取名同学问卷调查,则三个批次被选取的人数分别是多少?

(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,且(n=1,2,...).记
集合
(1)(Ⅰ)若,写出集合M的所有元素;
(2)(Ⅱ)若集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(3)(Ⅲ)求集合M的元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 .
(1)若 ,且 ,求 的值;
(2)将函数 的图像向右平移 个单位长度得到函数 的图像,若函数 上有零点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的程序框图表示的算法中,输入三个实数a,b,c,要求输出的x是这三个数中最大的数,那么在空白的判断框中,应该填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi , yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 =0.85x﹣85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg

查看答案和解析>>

同步练习册答案