精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,焦距为,直线过椭圆的左焦点.

1)求椭圆的标准方程;

2)若直线轴交于点是椭圆上的两个动点,的平分线在轴上,.试判断直线是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.

【答案】(1);(2)过定点

【解析】

(1)因为直线过椭圆的左焦点,故令,得,又因为离心率为,从而求出,又因为,求出的值,从而求出椭圆的标准方程;

(2)先求出点的坐标,设直线的方程为,联立方程组,利用根与系数的关系,设,,得到,又因为的平分线在轴上,所以,从而求出的值,得到直线的方程为过定点坐标.

解:(1)因为直线过椭圆的左焦点,故令,得

,解得.又,解得.

∴椭圆的标准方程为:.

(2)由(1)得,直线的方程为

得,,即.设直线的方程为

联立方程组,消去得,

,,,

则直线的斜率,

所以

的平分线在轴上,,即

,,.

即直线的方程为,过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足,.数列的前项和为,则满足的最小的值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点的直线与抛物线相交于两点,满足.

1)求抛物线的方程;

2)已知点的坐标为,记直线的斜率分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报元;

方案二:第一天回报元,以后每天比前一天多回报元;

方案三:第一天回报元,以后每天的回报比前一天翻一番.

记三种方案第天的回报分别为.

1)根据数列的定义判断数列的类型,并据此写出三个数列的通项公式;

2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象在处的切线为为自然对数的底数)

(1)求的值;

(2)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表列出了1058岁儿童的体重x(单位kg)(这是容易测得的)和体积y(单位dm3)(这是难以测得的),绘制散点图发现,可用线性回归模型拟合yx的关系:

体重x

17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10

体积y

16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70

(1)y关于x的线性回归方程(系数精确到0.01)

(2)5岁儿童的体重为13.00kg,估测此儿童的体积.

附注:参考数据:

137×14=1918.00

参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.

1)求曲线的直角坐标方程;

2)设曲线与直线交于点,点的坐标为(31),求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,为棱的中点,.

(1)证明:平面

(2)设二面角的正切值为,求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案