精英家教网 > 高中数学 > 题目详情
设{bn}是递增的等差数列,已知b1+b2+b3=6,b1b2b3=
7
2
,求等差数列{bn}的通项.
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:设等差数列{bn}的公差是d,根据题意和等差数列的通项公式列出方程组,结合条件求出首项和公差,再求出等差数列{bn}的通项.
解答: 解:设等差数列{bn}的公差是d,
因为b1+b2+b3=6,b1b2b3=
7
2

所以
3b1+3d=6
b1(b1+d)(b1+2d)=
7
2

解得
b1=
1
2
d=
3
2
b1=
7
2
d=-
3
2

因为{bn}是递增的等差数列,
所以
b1=
1
2
d=
3
2

所以bn=
1
2
+(n-1)×
3
2
=
3n
2
-1
点评:本题考查等差数列的通项公式,方程思想,以及化简计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos2α-cos2β=a,那么sin(α+β)sin(α-β)等于(  )
A、-
a
2
B、
a
2
C、-a
D、a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+1)=f(x)+1,当x∈[0,1]时,f(x)=|3x-1|-1,若对任意实数x,都有f(x+a)<f(x)成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断凼数y=cos2(x-
π
12
)+sin2(x+
π
12
)-1的奇偶性,并求周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,a1=20,an=54,Sn=888,求n与d.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=loga(1-ax),其中a>1.
(1)求函数f(x)的定义域,值域,并确定f(x)的图象在哪个象限;
(2)判断f(x)的单调性;
(3)证明y=f(x)的图象关于直线y=x对称;
(4)设方程f(x)+x+4=0有两个实数根x1,x2,求x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知高为1的梯形ABCD内接于半径为1的圆O,若梯形的上底CD=1,则(
OA
+
OB
OC
=(  )
A、0
B、
3
2
C、
2
3
-3
2
D、
3-2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+
b
x
+5(其中常数a,b∈R)满足f(2)+f(-2)=26.
(Ⅰ)若f(-1)=-2000,求f(1);
(Ⅱ)若函数φ(x)=xf(x)+2x+2-x(x∈(0,1))的值域为(0,
15
2
),求b的值;
(Ⅲ)在(Ⅱ)的条件下
①证明f(x)恰有一个零点;
②给出一个增函数g(x)使得当x∈N+时,g(x)∈N+,且
2
5
=rg(1)+rg(2)+rg(3)+…+rg(n)+…成立.
(已知等式
1
1-q
=1+q+q2+…+qn-1+…对任意实数q∈(-1,1)恒成立)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=2AD=2,点P在以AB为直径的半圆上移动,若
AP
AB
AD
,则λ+μ的最大值是(  )
A、
2
B、
2
+1
C、2
D、
5
+1
2

查看答案和解析>>

同步练习册答案