精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆轴正半轴交于点,与轴交于两点.

1)求过三点的圆的方程;

2)若为坐标原点,直线与椭圆和(1)中的圆分别相切于点和点不重合),求直线与直线的斜率之积.

【答案】1;(2.

【解析】

1)求出三点的坐标,求得圆心的坐标,进而求出圆的半径,由此可求得圆的方程;

2)设直线的方程为存在且),将直线的方程与椭圆的方程联立,由可得,由直线与圆相切可得出,进而可得出,求出直线与直线的斜率,进而可求得结果.

1)由题意可得,则圆心轴上,设点

,可得,解得,圆的半径为.

因此,圆E的方程为

2)由题意:可设的方程为存在且),

与椭圆联立消去可得

由直线与椭圆相切,可设切点为,由

可得,解得

由圆与直线相切,即,可得.

因此由,可得

直线的斜率为,直线的斜率

综上:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为151121376l95,则该数列的第8项为( )

A.99B.131C.139D.141

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 与圆相交于MNPQ四点,四边形MNPQ为正方形,△PF1F2的周长为

1)求椭圆C的方程;

2)设直线l与椭圆C相交于AB两点若直线AD与直线BD的斜率之积为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《孙子算经》中有这样一道算术题:今有物不知其数,三三数之余二,五五数之余三,问物几何?,将上述问题的所有正整数答案从小到大组成一个数列,则____________.(注:三三数之余二是指此数被3除余2,例如“5”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数,它的导函数为.

(1)当时,求的零点;

(2)若函数存在极小值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列三个结论:

①当时,函数的单调递减区间为

②若函数无最小值,则的取值范围为

③若,则,使得函数.恰有3个零点,且

其中,所有正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求的单调区间;

(2)若对于任意,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省从2021年开始,高考采用取消文理分科,实行的模式,其中的“1”表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目.某校高一年级有2000名学生(其中女生900人).该校为了解高一年级学生对“1”的选课情况,采用分层抽样的方法抽取了200名学生进行问卷调查,下表是根据调查结果得到的列联表.

性别

选择物理

选择历史

总计

男生

________

50

女生

30

________

总计

________

________

200

1)求的值;

2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点为,且椭圆上一点,满足,直线与椭圆交于两点,与轴、轴分别交于点,且.

1)求椭圆的方程;

2)若,且,求的值;

3)当△面积取得最大值,且点在椭圆上时,求的值.

查看答案和解析>>

同步练习册答案