【题目】已知椭圆与轴正半轴交于点,与轴交于、两点.
(1)求过、、三点的圆的方程;
(2)若为坐标原点,直线与椭圆和(1)中的圆分别相切于点和点(、不重合),求直线与直线的斜率之积.
科目:高中数学 来源: 题型:
【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,6l,95,则该数列的第8项为( )
A.99B.131C.139D.141
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C :与圆相交于M,N,P,Q四点,四边形MNPQ为正方形,△PF1F2的周长为
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于A、B两点若直线AD与直线BD的斜率之积为,证明:直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列,则______;______.(注:三三数之余二是指此数被3除余2,例如“5”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列三个结论:
①当时,函数的单调递减区间为;
②若函数无最小值,则的取值范围为;
③若且,则,使得函数.恰有3个零点,,,且.
其中,所有正确结论的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省从2021年开始,高考采用取消文理分科,实行“”的模式,其中的“1”表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目.某校高一年级有2000名学生(其中女生900人).该校为了解高一年级学生对“1”的选课情况,采用分层抽样的方法抽取了200名学生进行问卷调查,下表是根据调查结果得到的列联表.
性别 | 选择物理 | 选择历史 | 总计 |
男生 | ________ | 50 | |
女生 | 30 | ________ | |
总计 | ________ | ________ | 200 |
(1)求,的值;
(2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两焦点为,,且椭圆上一点,满足,直线与椭圆交于、两点,与轴、轴分别交于点、,且.
(1)求椭圆的方程;
(2)若,且,求的值;
(3)当△面积取得最大值,且点在椭圆上时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com