精英家教网 > 高中数学 > 题目详情
过点M(1,1)作一直线与椭圆
x2
9
+
y2
4
=1相交于A,B两点,若M点恰好为弦AB的中点,则AB所在直线的方程为______.
由题意,直线AB的斜率存在,设通过点M(1,1)的直线方程为y=k(x-1)+1,
代入椭圆方程,整理得(9k2+4)x2+18k(1-k)x+9(1-k)2-36=0
设A、B的横坐标分别为x1、x2,则
x1+x2
2
=
-18k(1-k)
2(9k2+4)
=1,
解之得k=-
4
9

故AB所在直线的方程为y=-
4
9
(x-1)+1
,即为4x+9y-13=0.
故答案为:4x+9y-13=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知点P是椭圆16x2+25y2=1600上一点,且在x轴上方,F1,F2分别为椭圆的左、右焦点,直线PF2的斜率为-4
3
,则△PF1F2的面积为(  )
A.32
3
B.24
3
C.32
2
D.24
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的方程为5x2-4y2=20两个焦点为F1,F2
(1)求此双曲线的焦点坐标和渐近线方程;
(2)若椭圆与此双曲线有共同的焦点,且有一公共点P满足|PF1|•|PF2|=6,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从圆O:x2+y2=4上任意一点P向x轴作垂线,垂足为P′,点M是线段PP′的中点,则点M的轨迹方程是(  )
A.
9x2
16
+
y2
4
=1
B.
9y2
16
+
x2
4
=1
C.x2+
y2
4
=1
D.
x2
4
+y2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的顶点为A1,A2,B1,B2,焦点为F1,F2,|A1B2|=
7
S?A1B1A2B2=2S?B1F1B2F2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线m过Q(1,1),且与椭圆相交于M,N两点,当Q是MN的中点时,求直线m的方程.
(Ⅲ)设n为过原点的直线,l是与n垂直相交于P点且与椭圆相交于两点A,B的直线,|
OP
|=1
,是否存在上述直线l使以AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为
1
3

(Ⅰ)求椭圆的标准方程;
(Ⅱ)在椭圆上任取一点P,过P点做y轴垂线段PQ,Q为垂足,当P在椭圆上运动时,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
6
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的两顶点为A(
2
,0)
,B(0,1),该椭圆的左右焦点分别是F1,F2
(1)在线段AB上是否存在点C,使得CF1⊥CF2?若存在,请求出点C的坐标;若不存在,请说明理由.
(2)设过F1的直线交椭圆于P,Q两点,求△PQF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点F的距离为
17
4

(1)求P与m的值;
(2)若直线l过焦点F交抛物线于P,Q两点,且|PQ|=5,求直线l的方程.

查看答案和解析>>

同步练习册答案