精英家教网 > 高中数学 > 题目详情

【题目】【2017徐州考前信息卷20】已知函数,且的最小值为

(1)求的值;

(2)若不等式对任意恒成立,其中是自然对数的底数,求的取值范围;

(3)设曲线与曲线交于点,且两曲线在点处的切线分别为试判断轴是否能围成等腰三角形?若能,确定所围成的等腰三角形的个数;若不能,请说明理由

【答案】见解析

【解析】(1),所以,则的最小值为

因此抛物线的对称轴为,即,所以

(2)由(1)知,不等式

所以对任意恒成立

,则

,则,所以函数上单调减,

,解得

此时无符合题意的值;

,令,解得

列表如下:

极小值

由题意,可知解得

的取值范围为

(3)设的倾斜角分别为,则

因为,所以,则均为锐角

轴所围成的三角形是等腰三角形,则

时,,即,解得

,即

整理得,,解得

所以存在唯一的满足题意1

时,由可得

,即

整理得,13分

,则

,解得列表如下:

极小值

所以内有一个零点,也是上的唯一零点

所以存在唯一的满足题意

综上所述,轴能围成2个等腰三角形1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+2x
(1)用定义法证明:函数f(x)是区间(0,+∞)上的增函数;
(2)若x∈[﹣1,2],求函数g(x)=2x[f(x)﹣2]﹣3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=﹣an2+2an , n∈N* , 且a1=0.9,令bn=lg(1﹣an);
(1)求证:数列{bn}是等比数列;
(2)求数列{ }各项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017苏北四市一模19】已知函数

(1)解关于的不等式

(2)证明:

(3)是否存在常数,使得对任意的恒成立?若存在,求

的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 ,n∈N*
(1)求证:数列 为等比数列;
(2)是否存在互不相等的正整数m,s,t,使m,s,t成等差数列,且am﹣1,as﹣1,at﹣1成等比数列?如果存在,求出所有符合条件的m,s,t;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苏北四市2016-2017学年度高三年级第一学期期末调研】如图,在平面直角坐标系中,已知椭圆的离心率为,且右焦点到左准线的距离为

1)求椭圆的标准方程;

(2)设为椭圆的左顶点,为椭圆上位于轴上方的点,直线轴于点

,过点的垂线,交轴于点

)当直线的斜率为时,求的外接圆的方程;

)设直线交椭圆于另一点,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式mx2+nx﹣ <0的解集为{x|x<﹣ 或x>2},则m﹣n=(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张老师给学生出了一道题,“试写一个程序框图,计算S=1+ + + + ”.发现同学们有如下几种做法,其中有一个是错误的,这个错误的做法是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案