精英家教网 > 高中数学 > 题目详情
9.设集合A={x|-1<x≤5},B={x|3<x<5},则A∩B=(  )
A.{x|3<x<5}B.{x|-1<x<5}C.{x|-1<x<1}D.{x|1<x<3}

分析 直接利用交集求解即可.

解答 解:集合A={x|-1<x≤5},B={x|3<x<5},
则A∩B={x|3<x<5}.
故选:A.

点评 本题考查交集的运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$ 若f(a)>1,则实数a的取值范围是a>4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算sin($\frac{2nπ}{3}$+$\frac{π}{6}$)+cos($\frac{2nπ}{3}$+$\frac{π}{6}$),其中n∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=logax在x∈[$\frac{1}{4}$,$\frac{1}{2}$]上的最大值比最小值大1.则a值为$\frac{1}{2}$或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\frac{{x}^{2}+ax+\frac{1}{2}}{x}$,x∈(0,+∞).
(1)写出函数f(x)的单调区间,并证明;
(2)若f(x)>0恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=-x2+x+2,对于给定的正数K,定义fK(x)=$\left\{\begin{array}{l}{f(x),}&{f(x)≤K}\\{K,}&{f(x)>K}\end{array}\right.$,若对于函数f(x)=-x2+x+2定义域内的任意x,恒有fK(x)=f(x),则K的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断下列函数的奇偶性:
(1)f(x)=3,x∈R;
(2)f(x)=5x4-4x2+7,x∈[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知k∈R且k≠-1,求证:圆系x2+y2+2kx+(4k+10)y+10k+20=0中任意两圆必相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=[x],x∈(-2.5,2]时,写出函数f(x)的解析式.

查看答案和解析>>

同步练习册答案