精英家教网 > 高中数学 > 题目详情

(本题满分14分)
设函数
(1)求函数极值;
(2)当恒成立,求实数a的取值范围.

(1)f极大=f(—1)=—4.  f极小=f(—)=;(2)a的范围为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设函数f(x)=x2+ex-xex.(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分 )已知函数
(1)求函数的最大值;
(2)若,不等式恒成立,求实数的取值范围;
(3)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数.
(1)求函数的单调区间;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

其中,曲线 在点处的切线垂直于轴.
(Ⅰ)求的值;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题13分)已知函数为常数)
(1)若在区间上单调递减,求的取值范围;
(2)若与直线相切:
(ⅰ)求的值;
(ⅱ)设处取得极值,记点M (,),N(,),P(), , 若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定的最小值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,已知是奇函数。
(Ⅰ)求b,c的值;
(Ⅱ)求g(x)的单调区间与极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数n ,不等式都成立.

查看答案和解析>>

同步练习册答案