精英家教网 > 高中数学 > 题目详情
3.已知点A为椭圆$\left\{\begin{array}{l}{x=5cosθ}\\{y=3sinθ}\end{array}\right.$ (θ为参数)上任意一点,点B为圆(x-1)2+y2=1 上任意一点,则|AB|的最大值为7.

分析 求得圆心和半径,由A到B的距离的最大值为A到圆心C的距离最大值加上半径,利用点到直线的距离公式及函数的单调性即可求得A到C距离的最大值.

解答 解:由圆(x-1)2+y2=1,圆心C(1,0),半径r=1
A到C点的距离丨AC丨=$\sqrt{(5cosθ-1)^{2}+9si{n}^{2}θ}$=$\sqrt{25co{s}^{2}θ-10cosθ+1+9si{n}^{2}θ}$,
=$\sqrt{16co{s}^{2}θ-10cosθ+10}$,
=$\sqrt{16(cosθ-\frac{5}{16})^{2}+\frac{135}{16}}$,
由-1≤cosθ≤1,根据函数的单调性可知,当cosθ=-1时,
丨AC丨取最大值,最大值为6,
∴|AB|的最大值丨AC丨max+r=7,
|AB|的最大值为7,
故答案为:7.

点评 本题考查椭圆的参数方程,两点之间的距离公式,二次函数的最值,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.给出下列六个命题:
①两个向量相等,则它们的起点相同,终点相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A,B,C,D四点构成平行四边形;
④在平行四边形ABCD中,一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$;
⑤若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;
⑥若向$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
其中错误的命题有①②③⑥.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若不等式(a2-3a-4)x2-(a-4)x-1<0的解集为R,则实数a的取值范围为(  )
A.(0,4)B.(0,4]C.[0,4)D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点$B(\sqrt{2},\sqrt{2})$的距离为2,
(1)求椭圆的方程;
(2)斜率k≠0的直线l:y=kx-2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\frac{1}{3}$≤a≤1,若函数f(x)=ax2-2x在[1,3]上的最大值为M(a),最小值为N(a)
(1)求N(a)的表达式;
(2)求M(a)的表达式并说出其最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图正三棱柱ABC-A1B1C1中,底面边长为a,侧棱长为$\frac{{\sqrt{2}}}{2}a$,若经过对角线AB1且与对角线BC1平行的平面交上底面于DB1
(1)试确定D点的位置,并证明你的结论;
(2)求二面角A1-AB1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点($\sqrt{2}$,2)在幂函数f(x)的图象上,点(2,$\frac{1}{2}$)在幂函数g(x)的图象上.
(1)求出幂函数f(x)及g(x)的解析式;
(2)在同一坐标系中画出f(x)及g(x)的图象;
(3)观察(2)中的图象,写出当f(x)>g(x)时,x的取值范围(不用说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC中,角A,B,C的对边分别为a,b,c,已知$b=\frac{1}{2}$,$bsinA=asin\frac{B}{2}$,则S△ABC的最大值为(  )
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{3}}}{16}$C.$\frac{{\sqrt{3}}}{24}$D.$\frac{{\sqrt{3}}}{48}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=x2+2(a-1)x+2在区间(0,4)上单调,那么实数a的取值范围(  )
A.(-∞,-3]B.[-3,1]C.[1,+∞)∪(-∞,-3]D.[1,+∞)

查看答案和解析>>

同步练习册答案