精英家教网 > 高中数学 > 题目详情
已知m∈R,设条件p:不等式(m2-1)x2+(m+1)x+1≥0对任意的x∈R恒成立;条件q:关于x的不等式|x+1|+|x-2|<m的解集为Φ.
(1)分别求出使得p以及q为真的m的取值范围;
(2)若复合命题“p或q”为真,“p且q”为假,求实数m的取值范围.
分析:本题考查的知识点是复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断.
解答:解:(1)∵p:不等式(m2-1)x2+(m+1)x+1≥0对任意的x∈R恒成立
当p为真时,
∴m=-1或
m2-1>0
△=(m+1)2-4(m2-1)≤0
?m≤-1或m≥
5
3

又∵q:关于x的不等式|x+1|+|x-2|<m的解集为Φ
当q为真,
∴(|x+1|+|x-2|)min≥m?m≤3,
∴p真时m的取值范围为A={m|m≤-1或m≥
5
3
}
,q真时m的取值范围为B={m|m≤3};
(2)∵“p或q”为真,“p且q”为假,
∴p和q一真一假,分两况讨论:
1°当p真且q假时,有A∩CRB={m|m>3};
2°当p假且q真时,有(CRA)∩B={m|-1<m<
5
3
}

1°,2°取并,
即得“p或q”为真,“p且q”为假时实数m的取值范围是{m|-1<m<
5
3
或m>3}
点评:本题考查的知识点是复合命题的真假判定,属于基础题目
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m≥-1,m≠0).
(1)求P点的轨迹方程并讨论轨迹是什么曲线?
(2)若m=-
5
9
,P点的轨迹为曲线C,过点Q(2,0)斜率为k1的直线?1与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为k2,求证k1k2为定值;
(3)在(2)的条件下,设
QB
AQ
,且λ∈[2,3],求?1在y轴上的截距的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为平面内一定点,设条件p:动点M满足
OM
=
OA
+λ(
AB
+
AC
),λ∈R;条件q:点M的轨迹通过△ABC的重心.则条件p是条件q的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:重庆市巫山高级中学2011届高三第一次月考文科数学试题 题型:044

已知m∈R,设条件p:不等式(m2-1)x2+(m+1)x+1≥0对任意的x∈R恒成立;条件q:关于x的不等式|x+1|+|x-2|<m的解集为Φ.

(1)分别求出使得p以及q为真的m的取值范围;

(2)若复合命题“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (mm0),点P的轨迹加上MN两点构成曲线C.

求曲线C的方程并讨论曲线C的形状;

(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点ABAB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;

(3) 在(2)的条件下,设,且,求y轴上的截距的变化范围.

 

查看答案和解析>>

同步练习册答案