精英家教网 > 高中数学 > 题目详情
18.已知$\frac{sinβ}{sinα}$=cos(α+β),其中α,β为锐角.
(1)求证:tanβ=$\frac{sin2α}{3-cos2α}$;
(2)求tanβ的最大值.

分析 (1)由条件利用同角三角函数基本关系式,两角和的余弦函数公式,倍角公式化简即可证明.
(2)由条件利用两角和差的正弦公式、同角三角函数的基本关系可得 2tanβ•tan2α-tanα+tanβ=0,再根据△=1-8tan2β≥0,求得tanβ的最大值.

解答 解:(1)证明:$\frac{sinβ}{sinα}$=cos(α+β),其中α,β为锐角.
⇒sinβ=sinα(cosαcosβ-sinαsinβ)
⇒sinβ(1-sin2α)=$\frac{1}{2}$sin2αcosβ
⇒tanβ=$\frac{sin2α}{2+2×\frac{1-cos2α}{2}}$=$\frac{sin2α}{3-cos2α}$.
得证.
(2)解:角α,β为锐角,且cos(α+β)sinα=sinβ=sin[(α+β)-α],
∴cos(α+β)sinα=sin(α+β)cosα-cos(α+β)sinα,
化简可得 tan(α+β)=2tanα,即$\frac{tanα+tanβ}{1-tanαtanβ}$=2tanα,
故有 2tanβ•tan2α-tanα+tanβ=0,∴△=1-8tan2β≥0,
求得-$\frac{\sqrt{2}}{4}$≤tanβ≤$\frac{\sqrt{2}}{4}$,β为锐角,故0<tanβ≤$\frac{\sqrt{2}}{4}$.
故tanβ的最大值是:$\frac{\sqrt{2}}{4}$.

点评 本题主要考查两角和差的正弦公式,余弦函数公式,倍角公式,同角三角函数的基本关系的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴为正半轴为极轴,已知斜率为$\sqrt{3}$的直线l经过点A(2$\sqrt{3}$,$\frac{π}{6}$),曲线C的直角坐标方程为y2=8x.
(1)求直线l的参数方程和曲线C的极坐标方程;
(2)设直线l个曲线C交于M,N两点,求弦长|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正四面体ABCD的棱长为4,内切球的表面积为$\frac{8π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,且过点P(2,1)
(I)求椭圆C的方程;
(II)直线l与C交于A、B两点,且线段AB的中点D在直线OP(O为坐标原点)上,当△OAB的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算(-3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$-tan(-$\frac{11π}{6}$)+lg0.2+$\frac{1}{3}$lg$\frac{1}{8}$的值为$-\frac{5+\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在边长为2的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,PC=2,E,F是PA和AB的中点,求PA与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=22x-2过定点(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x|2-x|,解不等式:f(x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2-\frac{2}{\sqrt{5}}t}\\{y=\frac{1}{\sqrt{5}}t}\end{array}\right.$(t为参数)
(Ⅰ)若曲线C1与C2的交点为A,B,求|AB|;
(Ⅱ)已知点M(ρ,θ)在曲线C1上,求ρ的取值范围.

查看答案和解析>>

同步练习册答案