精英家教网 > 高中数学 > 题目详情
2010年上海世博会大力倡导绿色出行,并提出在世博园区参观时可以通过植树的方式来抵消因出行产生的碳排放量.某游客非常支持这一方案,计划在游园期间种植某种树,已知这种树的成活率为p(0<p<1),设ξ表示他所种植的树成活与否,即ξ=
1,当树成活时
0,当树不成活时
,ξ的方差为V(ξ).则V(ξ)达到最大值时p的值为
 
分析:由题意知变量符合两点分布,根据两点分布的方差公式写出方差为V(ξ)的关于p的代数式,发现代数式是由两部分的积组成,而它们的和是定值,根据基本不等式等号成立的条件,得到p的值.
解答:解:∵由题意知变量ξ服从两点分布,
∴根据两点分布的方差公式得到V(ξ)=p(1-p)≤(
p+(1-p)
2
)
2
=
1
4

当且仅当p=1-p时“=”成立,
∴2p=1
p=
1
2

故答案为:
1
2
点评:本题利用比较新的一种情景,考查两点分布的知识,考查基本不等式的等号成立的条件,是一个综合题,运算量不大,但考查的内容结合的很完美,是一个好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到的两张都是“海宝”卡即可获奖.
(1)活动开始后,一位参加者问:“盒中有几张‘海宝’卡?”,主持人笑说:“我只知道从盒中任抽两张都不是‘海宝’卡的概率是
13
”,求抽奖都获奖的概率;
(2)在(1)的条件下,现在甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,求至多有一人获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

为迎接2010年上海世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60000cm2,四周空白的宽度为10cm,栏与栏之间的中缝空白的宽度为5cm,怎样确定广告矩形栏目高与宽的尺寸(单位:cm),能使整个矩形广告面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某社区为了选拔若干名2010年上海世博会的义务宣传员,从社区300名志愿者中随机抽取了50名进行世博会有关知识的测试,成绩(均为整数)按分数段分成六组:第一组[40,50),第二组[50,60),…,第六组[90,100],第一、二、三组的人数依次构成等差数列如图是按上述分组方法得到的频率分布直方图的一部分.规定成绩不低于66分的志愿者入选为义务宣传员.
(1)求第二组、第三组的频率并补充完整频率分布直方图;
(2)由所抽取志愿者的成绩分布,估计该社区有多少志愿者可以入选为义务宣传员.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)2010年上海世博会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,则小张不从事翻译工作且小赵不从事司机工作的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽“卡的概率是
518
,求抽奖者获奖的概率;
(2)现有甲、乙、丙、丁四人依次抽奖,用ξ表示获奖的人数,求P(ξ=3).

查看答案和解析>>

同步练习册答案