【题目】已知函数f(x)= ,
(1)画出函数f(x)的图象;
(2)求f(f(3))的值;
(3)求f(a2+1)(a∈R)的最小值.
【答案】
(1)解:作出函数图象如右图所示
(2)解:∵f(3)=log23,∴0<f(3)<2,
∴f(f(3))=f(log23)=2 = =
(3)解:由函数图象可知f(x)在[1,2]上是减函数,在(2,+∞)上是增函数,
∵a2+1≥1,
∴当a2+1=2时,f(a2+1)取得最小值f(2)=1.
【解析】(1)在每个区间段作出函数图像,(2)代入解析式,得到f(f(3))的值,(3)由图象得出f(x)的单调性,故当a2+1=2时,f(a2+1)取得最小值f(2)=1.
【考点精析】本题主要考查了函数的图象和函数的最值及其几何意义的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值;利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,设E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:面PAB⊥平面PDC;
(3)求二面角B﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,AA1=AB=AC=2,BC=2 ,M,N分别是CC1 , BC的中点,点P在直线A1B1上,且 .
(1)证明:无论λ取何值,总有AM⊥PN;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)=2x﹣2,则不等式f(log2x)>0的解集为( )
A.(0, )
B.( ,1)∪(2,+∞)
C.(2,+∞)
D.(0, )∪(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C1: +y2=1,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.
(1)求实数b的值;
(2)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA、MB分别与C1相交于D、E.
①证明: =0;
②记△MAB,△MDE的面积分别是S1 , S2 . 若 =λ,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(ax2﹣x+1),其中a>0且a≠1.
(1)当a= 时,求函数f(x)的值域;
(2)当f(x)在区间 上为增函数时,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解关于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集为(﹣1,3),求实数a,b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com