精英家教网 > 高中数学 > 题目详情

已知是函数的一个极值点。
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线与函数的图象有3个交点,求的取值范围。

解(Ⅰ)因为所以 因此
    
时,时,
所以的单调增区间是的单调减区间是
(Ⅱ) 由(Ⅰ)知,内单调增加,在内单调减少,在上单调增加,且当时,
所以的极大值为,极小值为
因此

所以在的三个单调区间直线的图象各有一个交点,当且仅当
因此,的取值范围为

解析

练习册系列答案
相关习题

科目:高中数学 来源:2014届四川达州第一中学高二下学期第一次月考文科数学试卷(解析版) 题型:解答题

已知是函数的一个极值点,其中

(1)求的关系式;

(2)求的单调区间;

(3)设函数函数g(x)= ;试比较g(x)与的大小。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东师大附中高三12月(第三次)模拟检测理科数学试卷(解析版) 题型:解答题

(本题满分12分)已知是函数的一个极值点. 

(Ⅰ)求的值;

(Ⅱ)当时,证明:

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省宁波万里国际学校高二下期中文科数学试卷(解析版) 题型:解答题

已知是函数的一个极值点,其中

(1)求的关系式;        

(2)求的单调区间;

(3)当时,函数的图象上任意一点的切线斜率恒大于,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题

(本小题满分15分)

 已知是函数的一个极值点,其中

(Ⅰ)求的关系表达式;

(Ⅱ)求的单调区间;

(Ⅲ)当时,函数的图象上任意一点的切线斜率恒大于,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二下学期第一次月考理科数学试卷 题型:解答题

(本小题满分14分)

已知是函数的一个极值点,其中

(1)求的关系式;

(2)求的单调区间;

(3)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.

 

查看答案和解析>>

同步练习册答案