【题目】贵阳与凯里两地相距约200千米,一辆货车从贵阳匀速行驶到凯里,规定速度不得超过100千米时,已知货车每小时的运输成本以元为单位由可变部分和固定部分组成:可变部分与速度千米时的平方成正比,比例系数为;固定部分为64元.
把全程运输成本元表示为速度千米时的函数,并指出这个函数的定义域;
为了使全程运输成本最小,货车应以多大速度行驶?
科目:高中数学 来源: 题型:
【题目】记函数f(x)=的定义域为集合A,函数g(x)=在(0,+∞)上为增函数时k的取值集合为B,函数h(x)=x2+2x+4的值域为集合C.
(1)求集合A,B,C;
(2)求集合A∪(RB),A∩(B∪C).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点, 分别是椭圆的左、右顶点.
()求圆和椭圆的方程.
()已知, 分别是椭圆和圆上的动点(, 位于轴两侧),且直线与轴平行,直线, 分别与轴交于点, .求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,左、右顶点分别为,经过点且斜率为的直线与椭圆交于两点.
(1)求椭圆的方程;
(2)记与的面积分别为和,求关于的表达式,并求出当为何值时有最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率是,过点的动直线与椭圆相交于两点,当直线与轴平行时,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)在轴上是否存在异于点的定点,使得直线变化时,总有?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f′(x)是函数f(x)的导函数,f(x)的图象如图所示,则不等式f′(x)f(x)<0的解集为( )
A.(1,2)∪( ,3)∪(﹣∞,﹣1)
B.(﹣∞,﹣1)∪( ,3)
C.(﹣∞,﹣1)∪(3,+∞)
D.(1,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的焦点是椭圆: 的顶点, 为椭圆的左焦点且椭圆经过点.
(1)求椭圆的方程;
(2)过椭圆的右顶点作斜率为()的直线交椭圆于另一点,连结并延长交椭圆于点,当的面积取得最大值时,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com