精英家教网 > 高中数学 > 题目详情
15.二次函数y=ax2+bx+c(a>0)的图象是抛物线,其焦点到准线的距离是1,则a的值是$\frac{1}{2}$.

分析 二次函数y=ax2+bx+c可化为y=a(x+$\frac{b}{2a}$)2-$\frac{{b}^{2}}{4a}$+c,形状与y=ax2相似,利用焦点到准线的距离是1,可得$\frac{1}{2a}$=1,即可求出a的值.

解答 解:二次函数y=ax2+bx+c可化为y=a(x+$\frac{b}{2a}$)2-$\frac{{b}^{2}}{4a}$+c,形状与y=ax2相似,
∵焦点到准线的距离是1,∴$\frac{1}{2a}$=1,
∴a=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查抛物线方程与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知偶函数f(x)满足,f(x+1)=-f(x)且当x∈[-1,0]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-loga(x+2)有4个零点,则实数a的取值范围是[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在正方体OADB-CA′D′B′中,点E是AB与OD的交点,M是OD′与CE的交点,
(1)试分别用向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$表示向量$\overrightarrow{OD′}$和$\overrightarrow{OM}$;
(2)$\overrightarrow{OI}$,$\overrightarrow{OJ}$,$\overrightarrow{OK}$分别为$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$方向上的单位向量,试用$\overrightarrow{OI}$,$\overrightarrow{OJ}$,$\overrightarrow{OK}$表示$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆M与x轴相切且过点(0,2),直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=2+\sqrt{3}t}\end{array}\right.$(t为参数).
(1)写出直线l的普通方程与圆M的圆心的轨迹方程;
(2)P为直线l上任意一点,Q为C上的任意一点,求P、Q两点间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα+cosα=$\frac{4}{5}$,且$\frac{3π}{2}$<α<2π,计算:
(1)sinα-cosα;
(2)$\frac{1}{co{s}^{2}α}$-$\frac{1}{si{n}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn=pn2-n(p∈R,且p≠0),且a2,a3,a5依次成等比数列.
(1)求数列{an}的通项;
(2)若数列{bn}满足bn=n•2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x+2y=2,则$\sqrt{{x}^{2}+{y}^{2}}$+y的最小值为$\frac{\sqrt{155}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(2,-1),点O为坐标原点,若向量$\overrightarrow{OA}=3\overrightarrow{a}-\overrightarrow{b}$,$\overrightarrow{BA}=2\overrightarrow{b}-\overrightarrow{a}$,求向量$\overrightarrow{BO}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对某班的全体学生一次数学测试成绩进行分析,数据的分组情况为:[50,60)[60,70)[70,80)[80,90)[90,100),频率分布直方图如图:
(Ⅰ)求成绩落在[80,90)之间的频率;
(Ⅱ)若低于60分的人数是6人,则该班学生人数是多少?
(Ⅲ)请你估计全班的平均分.

查看答案和解析>>

同步练习册答案