精英家教网 > 高中数学 > 题目详情

【题目】某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:

(1)求回归直线方程;

(2)试预测广告费支出为万元时,销售额多大?

(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过的概率.(参考数据: .

【答案】(1);(2)万元;(3).

【解析】试题分析:

(1)利用公式求得即可求得回归方程为 .

(2)由(1)的结论可得销售额大约为万元.

(3)列出所有基本事件,由对立事件和古典概型公式可得至少有一组数据其预测值与实际值之差的绝对值不超过的概率为.

试题解析: (1) ,又已知

,于是可得: = ,因此,所求回归直线方程为: .

(2) 根据上面求得的回归直线方程,当广告费支出为万元时, (万元),即这种产品的销售收入大约为万元.

(3)

基本事件: 个,两组数据其预测值与实际值之差的绝对值都超过,所以至少有一组数据其预测值与实际值之差的绝对值不超过的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义在 上的偶函数,当时, ).

(1)当时,求的解析式;

(2)若,试判断的上单调性,并证明你的结论;

(3)是否存在,使得当时, 有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值

(1)求函数的解析式;

(2)设函数,若对任意的,总存在唯一的为自然对数的底数)使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

(1)如果的展开式中各项系数之和为128,则展开式中的系数是-21;

(2)用相关指数来刻画回归效果, 的值越大,说明模型的拟合效果越差;

(3)若上的奇函数,且满足,则的图象关于对称;

(4)一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为,且,已知他投篮一次得分的数学期望为2,则的最小值为

其中正确结论的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,侧棱底面 的中点.

(1)求二面角的平面角的余弦值;

(2)在被上是否存在点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。设购进A掀电脑x台,这100台电脑的销售总利润为y元。

①求yx的关系式;

②该商店购进A型、B型各多少台,才能使销售利润最大?

(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台。若商店保持两种电脑的售价不变,请你以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2S△ABC·.

(1)求角B的大小;

(2)若b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发一种新药在试验药效时发现:如果成人按规定剂量服用那么服药后每毫升血液中的含药量y(微克)与时间x(小时)之间满足y=其对应曲线(如图所示)过点.

(1)试求药量峰值(y的最大值)与达峰时间(y取最大值时对应的x值);

(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效那么成人按规定剂量服用该药后一次能维持多长的有效时间(精确到0.01小时)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x2﹣4ax+a2﹣2a+2在区间[0,2]上有最小值3,求实数a的值.

查看答案和解析>>

同步练习册答案