精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长为的正方体中,分别是棱所在直线上的动点:

1)求的取值范围:

2)若为面内的一点,且,求的余弦值:

3)若分别是所在正方形棱的中点,试问在棱上能否找到一点,使平面?若能,试确定点的位置,若不能,请说明理由.

【答案】1;(2;(3)点M的中点,理由见解析

【解析】

1)设,求出,利用余弦定理求解,然后求出的取值范围.
2)设,三边上的投影分别是,转化求出,即可得到它的余弦值.
3)设的交点为,连接,说明平面,过K,延长后交所在的直线于点M,则BM⊥平面.通过,求解即可.

解:(1)设


所以
的取值范围为
2)解:设,三边上的投影分别是


则由于



,它的余弦值为
3)解:设的交点为.连接

则由以及,知平面
于是面,在面内过K,延长后交所在的直线于点M,则BM⊥平面


在平面内,由
,又


这说明点M的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,如果存在区间,其中,同时满足:

内是单调函数:②当定义域为时,的值域为,则称函数是区间上的“保值函数”,区间称为“保值函数”.

(1)求证:函数不是定义域上的“保值函数”;

(2)若函数)是区间上的“保值函数”,求的取值范围;

(3)对(2)中函数,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线的左焦点作圆的切线交双曲线的右支于点,且切点为,已知为坐标原点,为线段的中点(点在切点的右侧),若的周长为,则双曲线的渐近线的方程为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面, ,是线段的中点.

(1)证明:平面

(2)当为何值时,四棱锥的体积最大?并求此最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知三边的长都是整数,,如果,则符合条件的三角形的个数是(  

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足,.数列的前项和为,则满足的最小的值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.

(1)求椭圆的标准方程;

(2)是否存在直线与椭圆相交于两点,使得?若存在,求的取值范围;若不存在,请说明理由!

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数且 )曲线的参数方程为为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.

(1)求的交点到极点的距离;

(2)设交于点,交于点,当上变化时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和圆.

1)若圆与圆相外切,求的值;

2)若圆轴相切,求圆与圆的公共弦长.

查看答案和解析>>

同步练习册答案