精英家教网 > 高中数学 > 题目详情

【题目】已知首项为﹣6的等差数列{an}的前7项和为0,等比数列{bn}满足b3=a7 , |b3﹣b4|=6.
(1)求数列{bn}的通项公式;
(2)是否存在正整数k,使得数列{ }的前k项和大于 ?并说明理由.

【答案】
(1)解:设等差数列{an}的公差为d,前n项Sn,a1=﹣6,

由S7=0,即7a1+ ×d=0,解得:d=2,

∴an=a1+(n﹣1)d=﹣6+(n﹣1)×2=2n﹣8,

设等比数列{bn}的公比为q,则由b3=a7=6,由|b3﹣b4|=6,即,|6﹣b4|=6.

∴b4=12或b4=0,

又∵{bn}为等比数列,

∴b4=12

∴q=2,

∴bn=b3qn3=6×2n3=3×2n2

数列{bn}的通项公式bn=3×2n2


(2)解:

数列{ }是以 为首项,以 为公比的等比数列,

数列{ }的前k项和Tk= = (1﹣ ),

∴Tk ,又∵

∴不存在正整数k,使得数列{ }的前k项和大于


【解析】(1)由题意可知:7a1+ ×d=0,求得d=2,即可求得an=2n﹣8,则b3=a7=6,则|6﹣b4|=6.求得b4=12则q= =2,由等比数列的性质可知:bn=b3qn3 , 即可求得数列{bn}的通项公式;(2) ,数列{ }是以 为首项,以 为公比的等比数列,Tk= = (1﹣ ),则Tk ,不存在正整数k,使得数列{ }的前k项和大于
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,
(1)求tanA;
(2)若BC=1,求ACAB的最大值,并求此时角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 已知a5=﹣3,S10=﹣40.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2,4,8,…,2n , …项,按原来的顺序排成一个新数列{bn},求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有两个零点,求的取值范围;

(Ⅱ)证明:当时,关于的不等式上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在上的函数满足,且是奇函数,现给出下列4个结论:①是周期为4的周期函数;

的图象关于点对称;

是偶函数;

的图象经过点,其中正确结论的序号是__________(请填上所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆O为△ABC的外接圆,过点C作圆O的切线交AB的延长线于点D,∠ADC的平分线交AC于点E,∠ACB的平分线交AD于点H.

(1)求证:CH⊥DE;
(2)若AE=2CE.证明:DC=2DB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左焦点为F,离心率为 .若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(  )
A.
=1
B.
=1
C.
=1
D.
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为(  )

A.x>3
B.x>4
C.x≤4
D.x≤5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2x-3y)10的展开式中,:

(1)各项的二项式系数的和;

(2)奇数项的二项式系数的和与偶数项的二项式系数的和;

(3)各项系数之和;

(4)奇数项系数的和与偶数项系数的和.

查看答案和解析>>

同步练习册答案