精英家教网 > 高中数学 > 题目详情

【题目】如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为______

【答案】34π

【解析】

由三视图知该几何体中一个侧面与底面垂直,建立空间直角坐标系,求出几何体外接球的球心与半径,从而求出外接球的表面积.

由三视图知,该几何体中一个侧面SAC与底面ABC垂直,

由三视图的数据可得OAOC2OBOS4

建立空间直角坐标系Oxyz,如图所示;

A0,﹣20),B400),C020),S004),

则三棱锥外接球的球心I在平面xOz上,设Ix0z);

得,

解得xz

∴外接球的半径R|BI|

∴该几何体外接球的表面积为

SR234π

故答案为:34π

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数在区间上的最小值;

(Ⅱ)当时,求证:过点恰有2条直线与曲线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,且离心率.

1)求椭圆的方程;

2)直线的斜率为,直线与椭圆交于两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元

1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;

2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:

等级

标准果

优质果

精品果

礼品果

个数

10

30

40

20

(1)若将频率是为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率.(结果用分数表示)

(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.

方案:不分类卖出,单价为.

方案:分类卖出,分类后的水果售价如下:

等级

标准果

优质果

精品果

礼品果

售价(元/kg)

16

18

22

24

从采购单的角度考虑,应该采用哪种方案?

(3)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C=1ab0)的左焦点分别为F1-c0),F2c0),过F2作垂直于x轴的直线l交椭圆CAB两点,满足|AF2|=c

1)椭圆C的离心率;

2MN是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MPNP分别和x轴相交于RQ两点,O为坐标原点,若|OR||OQ|=4,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.

若甲地区和乙地区用户满意度评分的中位数分别为m1m2;平均数分别为s1s2,则下面正确的是(  )

A. m1m2s1s2B. m1m2s1s2

C. m1m2s1s2D. m1m2s1s2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿“爬”且乙不模仿“扶”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,其中,数列满足:

1)当时,求的值;

2)证明:对任意均成立,并求数列的通项公式;

3)是否存在正数,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的.

查看答案和解析>>

同步练习册答案