(本小题满分14分)
已知在直四棱柱ABCD-A1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8.E,F分别是线段A1A,BC上的点.
(1)若A1E=5,BF=10,求证:BE∥平面A1FD.
(2)若BD⊥A1F,求三棱锥A1-AB1F的体积.
(1)过E作EG∥AD交A1D于G,连结GF.
∵=,所以=,∴EG=10=BF.
∵BF∥AD,EG∥AD,∴BF∥EG.
∴四边形BFGE是平行四边形.
∴BE∥FG.…………………………………4分
又FGÌ平面A1FD,BEË平面A1FD,
∴BE∥平面A1FD. …………………………………6分
(2)∵在直四棱柱ABCD-A1B1C1D1中,A1A⊥面ABCD,BDÌ面ABCD,∴A1A⊥BD.
由已知,BD⊥A1F,AA1∩A1F=A1,
∴BD⊥面A1AF.
∴BD⊥AF. ………………………………8分
∵梯形ABCD为直角梯形,且满足AD⊥AB,BC∥AD,
∴在Rt△BAD中,tan∠ABD==2.
在Rt△ABF中,tan∠BAF==.
∵BD⊥AF,∴∠ABD+∠BAF=,∴=,BF=4. ………………10分
∵在直四棱柱ABCD-A1B1C1D1中,A1A⊥面ABCD,
∴面AA1B1B⊥面ABCD,又面ABCD∩面AA1B1B=AB,∠ABF=90°,
∴FB⊥面AA1B1B,即BF为三棱锥F-A1B1A的高. ………………12分
∵∠AA1B1=90°,AA1=BB1=8,A1B1=AB=8,∴S=32.
∴V=V=×S×BF=. ………………14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com