精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为(-2,2),导函数为f′(x)=x2+2cosx且f(0)=0,则满足f(1+x)+f(x2-x)>0的实数x的取值范围为(  )
A、(-∞,+∞)
B、(-1,1)
C、(-∞,1-
2
)∪(1+
2
,+∞)
D、(-1,1-
2
)∪(1,1+
2
)
考点:利用导数研究函数的单调性,导数的运算
专题:计算题,函数的性质及应用,导数的综合应用
分析:由导函数为f′(x)=x2+2cosx且f(0)=0可求出f(x)=
1
3
x3+2sinx,从而利用函数的性质化简不等式.
解答: 解:∵f′(x)=x2+2cosx,
∴f(x)=
1
3
x3+2sinx+C;
又f(0)=0得,f(x)=
1
3
x3+2sinx;
则f(x)为奇函数,且为增函数;
故f(1+x)+f(x2-x)>0可化为
x2-x>-x-1
-2<x+1<2
-2<x2-x<2

解得,x∈(-1,1);
故选B.
点评:本题考查了导数的综合应用及函数的性质的判断与应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax2(a∈R)
(1)求f(x)的单调区间;
(2)若xf′(x)-f(x)>0在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:|2x+1|-|x-4|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义min[f(x),g(x)]=
f(x),f(x)≤g(x)
g(x),f(x)>g(x)
,若函数f(x)=x2+tx+s的图象经过两点(x1,0),(x2,0),且存在整数m,使得m<x1<x2<m+1成立,则(  )
A、min[f(m),f(m+1)]<
1
4
B、min[f(m),f(m+1)]>
1
4
C、min[f(m),f(m+1)]=
1
4
D、min[f(m),f(m+1)]≥
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设x轴、y轴正方向的单位向量分别为
i
j
,坐标平面上的点An满足条件:
OA1
=
+
,   
AnAn+1
=2n
-
(n∈N*).
(1)若数列{an}的前n项和为sn,且sn=
OA1
AnAn+1
,求数列{an}的通项公式.
(2)求向量 
OAn+1
的坐标,若△OA1An+1(n∈N*)的面积S△OA1An+1构成数列{bn},写出数列{bn}的通项公式.
(3)若cn=
bn
an
-2,指出n为何值时,cn取得最大值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:A={x∈R|x2+ax+1<0},q:B={x∈R|x2-2x<0},若条件p是条件q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P1(6,-3),P2(-3,8),且|
P1P
|=2|
PP2
|
,点P在线段P1P2的延长线上,则P点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2cos2x+a,当x∈[-
π
4
π
4
]时,f(x)的最小值为-3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

第一行是等差数列1,2,3…2013,将其相邻的两项和依次写下作为第二行,第二行相邻两项和依次写下作为第三行…依此类推,共写出12行,则各行第一个数之和为
 

查看答案和解析>>

同步练习册答案