【题目】随着城市化建设步伐,建设特色社会主义新农村,有n个新农村集结区,,,…,按照逆时针方向分布在凸多边形顶点上(),如图所示,任意两个集结区之间建设一条新道路,两条道路的交汇处安装红绿灯(集结区,,,…,除外),在凸多边形内部任意三条道路都不共点,记安装红绿灯的个数为.
(1)求,;
(2)求,并用数学归纳法证明.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:,且对任意,(s,k,l,)都有,则称数列为“T”数列.
(1)证明:正项无穷等差数列是“T”数列;
(2)记正项等比数列的前n项之和为,若数列是“T”数列,求数列公比的取值范围;
(3)若数列是“T”数列,且数列的前n项之和满足,求证:数列是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知椭圆:()的离心率为,右准线方程是直线l:,点P为直线l上的一个动点,过点P作椭圆的两条切线,切点分别为AB(点A在x轴上方,点B在x轴下方).
(1)求椭圆的标准方程;
(2)①求证:分别以为直径的两圆都恒过定点C;
②若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知点为抛物线的焦点,点在抛物线上,且.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:
根据该折线图可知,下列说法错误的是( )
A. 该超市2018年的12个月中的7月份的收益最高
B. 该超市2018年的12个月中的4月份的收益最低
C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com