精英家教网 > 高中数学 > 题目详情
已知点是椭圆上一点,为椭圆的一个焦点,且轴,焦距,则椭圆的离心率是(     )
A.B.-1C.-1D.
C

试题分析:设焦点,椭圆方程中令整理的
点评:求离心率关键是找到关于的齐次方程或不等式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是椭圆的左焦点,直线方程为,直线轴交于点,分别为椭圆的左右顶点,已知,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率为的直线交椭圆于两点,求三角形面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率
(1)求椭圆的标准方程;
(2)是否存在过点的直线交椭圆于不同的两点MN,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点(),
(1)求椭圆的方程;
(2)设直线与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆是其左顶点和左焦点,是圆上的动点,若,则此椭圆的离心率是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左焦点为, 点在椭圆上, 如果线段的中点轴的
正半轴上, 那么点的坐标是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一圆形纸片的圆心为点,点是圆内异于点的一定点,点是圆周上一点.把纸片折叠使点重合,然后展平纸片,折痕与交于点.当点运动时点的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

同步练习册答案