精英家教网 > 高中数学 > 题目详情
6.函数$f(x)=\sqrt{1-{2^x}}$的定义域为{x|x≤0}.

分析 由1-2x≥0,结合指数函数的单调性,即可得到所求定义域.

解答 解:由1-2x≥0,
即2x≤1=20,
解得x≤0,
定义域为{x|x≤0}.
故答案为:{x|x≤0}.

点评 本题考查函数的定义域的求法,注意偶次根式和指数函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知sin(α+β)=$\frac{2}{3}$,sin(α-β)=$\frac{1}{3}$,则$\frac{tanα}{tanβ}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$z=\frac{3+4i}{i}$,则|z|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的通项公式为an=$\frac{2}{{n}^{2}+n}$,那么数列{an}的前99项之和是(  )
A.$\frac{99}{100}$B.$\frac{101}{100}$C.$\frac{99}{50}$D.$\frac{101}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个焦点为F1(-$\sqrt{3}$,0),M(1,y)(y>0)为椭圆上的一点,△MOF1的面积为$\frac{3}{4}$.
(1)求椭圆C的标准方程;
(2)若点T在圆x2+y2=1上,是否存在过点 A(2,0)的直线l交椭圆C于点 B,使$\overrightarrow{{O}{T}}$=$\frac{{\sqrt{5}}}{5}$(${\overrightarrow{{O}{A}}$+$\overrightarrow{{O}{B}}}$)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线y=k(x-1)与椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1总有公共点,则实数m的取值范围是(  )
A.(0,1)B.[1,+∞)C.(1,2)∪(2,+∞)D.[1,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,曲线M:y2=x与曲线N:(x-4)2+2y2=m2(m>0)相交于A、B、C、D四个点.
(1)求m的取值范围;
(2)求四边形ABCD的面积的最大值及此时对角线AC与BD的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给定映射f:(x,y)→(x+2y,2x-y),在映射f下,(3,1)的原像为(  )
A.(1,3)B.(5,5)C.(3,1)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:2x-3y+1=0,点A(-1,-2).求:
(1)直线m:3x-2y-6=0关于直线l的对称直线m'的方程;
(2)直线l关于点A(-1,-2)对称的直线l'的方程.

查看答案和解析>>

同步练习册答案