【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 2 | ﹣2 | 0 |
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
【答案】
(1)解:补充表格:
由于最大值为2,最小值为﹣2,故A=2.
= = ﹣ = ,∴ω=2.
再根据五点法作图可得2 +φ= ,∴φ=﹣ ,故f(x)=2sin(2x﹣ ).
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 2 | 0 | ﹣2 | 0 |
(2)解:将函数y=f(x)的图象向左平移 个单位后,可得y=2sin[2(x+ )﹣ ]=2sin(2x+ )的图象;
再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,
得到函数y=g(x)=2sin( x+ )的图象.
令2kπ+ ≤ x+ ≤2kπ+ ,求得4kπ+ ≤x≤4kπ+ ,
故g(x)的单调递减区间为[得4kπ+ ,4kπ+ ],k∈Z
【解析】(1)根据最值求得A,由周期求得ω,五点法做函数y=Asin(ωx+φ)的图象求得φ的值,可得函数的解析式.(2)根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,得出结论.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ex﹣ (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )
A.(﹣ , )
B.(﹣ , )
C.(﹣∞, )
D.(﹣∞, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1 , 又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且 . (Ⅰ) 求椭圆的方程;
(Ⅱ) 若M是椭圆上的动点,点N(4,2),求线段MN中点Q的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列{an}的前n项和为Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=|2n﹣5|an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+x2(a为实常数).
(1)当a=﹣4时,求函数f(x)在[1,e]上的最大值及相应的x值;
(2)当x∈[1,e]时,讨论方程f(x)=0根的个数.
(3)若a>0,且对任意的x1 , x2∈[1,e],都有 ,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点O,焦点在x轴上,离心率为 的椭圆过点( , ).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差为2,前n项和为Sn , 且S1、S2、S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(﹣1)n﹣1 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列判断正确的是 . (填写所有正确的序号) ①若sinx+siny= ,则siny﹣cos2x的最大值为 ;
②函数y=sin(2x+ )的单调增区间是[kπ﹣ ,kπ+ ],k∈Z;
③函数f(x)= 是奇函数;
④函数y=tan ﹣ 的最小正周期是π.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com