精英家教网 > 高中数学 > 题目详情
10.曲线y=x4在x=1处的切线方程为(  )
A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0

分析 先求出函数y=x4的导函数,然后求出在x=1处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可.

解答 解:函数的导数为:y′=4x3
y′|x=1=4,切点为(1,1)
∴曲线y=x3在点(1,1)切线方程为4x-y-3=0
故选:A.

点评 本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数h(x)=x2-mx,g(x)=lnx.
(Ⅰ)当m=-1时,若函数h(x)与g(x)在x=x0处的切线平行,求两切线间的距离;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a<0,则抛物线y=4ax2的焦点坐标为(  )
A.(a,0)B.(-a,0)C.$(0,\frac{1}{16a})$D.$(0,-\frac{1}{16a})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,定义$\left\{\begin{array}{l}{{x}_{n+1}={y}_{n}-{x}_{n}}\\{{y}_{n+1}={y}_{n}+{x}_{n}}\end{array}\right.$(n∈N*为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换,我们把它称为点变换.已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)是经过点变换得到的一列点.设an=|PnPn+1|,数列{an}的前n项和为Sn,那么$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{a}_{n}}$的值为=2+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:
(1)${({\frac{25}{9}})^{\frac{1}{2}}}+{3^0}-{({\frac{3}{4}})^{-1}}$
(2)$\frac{1}{2}lg25+lg2-lg10-{log_2}9•{log_3}$2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.空间四边形OABC各边以及AC、BO的长都是1,点D、E分别是边OA,BC的中点,连接DE.
(1)求直线AC与OB所成角;
(2)计算DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求适合下列条件的双曲线的标准方程:
(1)焦点在y轴上,虚轴长为12,离心率为$\frac{5}{4}$;
(2)顶点间的距离为4,渐近线方程为$y=±\frac{1}{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}为等差数列,是${a}_{1}^{2}$+${a}_{7}^{2}$≤10,则a4的最大值是?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义域为R的奇函数满足f(x+4)=f(x)+f(2),且x∈(0,2)时,f(x)=lnx,则函数f(x)在区间[-4,4]上有9个零点.

查看答案和解析>>

同步练习册答案