精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的最小值;

(2)如果不等式 在区间上恒成立,求的最大值.

【答案】(1);(2).

【解析】试题分析:(I)x(0,+∞),,利用导数研究其单调性即可得出当x=1时,函数f(x)取得极小值即最小值..
(II)不等式(kZ)在区间(1,+∞)上恒成立 , , 利用导数研究其单调性极值即可得出.

试题解析:

(1)函数的定义域为,因为,所以当时, ,函数单调递减;当时, ,函数单调递增.

因此,函数的最小值为.

(2)不等式在区间上恒成立等价于,令,则,由于时, ,函数单调递增且,所以函数有且只有一个零点,因为 ,所以,因此,当时, ;当时, ,从而函数 上分别是减函数、增函数,

因此

所以,由,因此,且,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.

(1)求椭圆的方程;

(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 满足 ,且 .

(1)求

(2)猜想 的通项公式,并证明你的结论;

(3)证明:对所有的 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数的极小值;

2)设函数,求函数的单调区间;

3)若在区间上存在一点,使得成立,求的取值范围,(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数y=f(x)满足f(﹣2)=f(4)=﹣16,且f(x)最大值为2.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=log2x,x∈(0,2),若关于x的方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2﹣2x.
(1)画出偶函数f(x)的图像的草图,并求函数f(x)的单调递增区间;
(2)当直线y=k(k∈R)与函数y=f(x)恰有4个交点时,求k的取值范围.

查看答案和解析>>

同步练习册答案