【题目】1772年德国的天文学家波得发现了求太阳的行星距离的法则,记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:
星名 | 水星 | 金星 | 地球 | 火星 | 木星 | 土星 |
与太阳的距离 | 4 | 7 | 10 | 16 | 52 | 100 |
除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐经过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带,请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是( )
A.388B.772C.1540D.3076
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,若函数在,()处导数相等,证明:;
(2)是否存在,使直线是曲线的切线,也是曲线的切线,而且这样的直线是唯一的,如果存在,求出直线方程,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有曲池,上中周二丈,外周四丈,广一丈,下中周一丈四尺,外周二丈四尺,广五尺,深一丈,问积几何?”其意思为:“今有上下底面皆为扇形的水池,上底中周2丈,外周4丈,宽1丈;下底中周1丈4尺,外周长2丈4尺,宽5尺;深1丈.问它的容积是多少?”则该曲池的容积为( )立方尺(1丈=10尺,曲池:上下底面皆为扇形的土池,其容积公式为[(2×上宽+下宽)(2×下宽+上宽)]×深)
A.B.1890C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρsin(θ)=0.
(1)求曲线C的直角坐标方程;
(2)若直线l的参数方程是(α为参数),且α∈(,π)时,直线l与曲线C有且只有一个交点P,求点P的极径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:(,)的左、右焦点分别为,,过点且斜率为的直线交双曲线于,两点,线段的垂直平分线恰过点,则该双曲线的离心率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为F,点B是椭圆C的短轴的一个端点,ΔOFB的面积为,椭圆C上的两点H、G关于原点O对称,且、的等差中项为2
(1)求椭圆的方程;
(2)是否存在过点M(2,1)的直线与椭圆C交于不同的两点P、Q,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com