精英家教网 > 高中数学 > 题目详情

【题目】1772年德国的天文学家波得发现了求太阳的行星距离的法则,记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:

星名

水星

金星

地球

火星

木星

土星

与太阳的距离

4

7

10

16

52

100

除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐经过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带,请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是(

A.388B.772C.1540D.3076

【答案】B

【解析】

根据题中表格中距离的规律,求出距离的通式,然后即可求出第10个行星与太阳的平均距离.

设金星到太阳的距离为,地球到到太阳的距离为,以此类推,

可知第个行星到太阳的距离为

由表格可以得到

故可得到规律

所以第10个行星与太阳的平均距离大约是.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的零点个数为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,若函数)处导数相等,证明:

2)是否存在,使直线是曲线的切线,也是曲线的切线,而且这样的直线是唯一的,如果存在,求出直线方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有曲池,上中周二丈,外周四丈,广一丈,下中周一丈四尺,外周二丈四尺,广五尺,深一丈,问积几何?其意思为:今有上下底面皆为扇形的水池,上底中周2丈,外周4丈,宽1丈;下底中周14尺,外周长24尺,宽5尺;深1丈.问它的容积是多少?则该曲池的容积为( )立方尺(1丈=10尺,曲池:上下底面皆为扇形的土池,其容积公式为[上宽+下宽)下宽+上宽)深)

A.B.1890C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ24ρsinθ)=0

1)求曲线C的直角坐标方程;

2)若直线l的参数方程是α为参数),且α∈(π)时,直线l与曲线C有且只有一个交点P,求点P的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)若函数有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线)的左、右焦点分别为,过点且斜率为的直线交双曲线于两点,线段的垂直平分线恰过点,则该双曲线的离心率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

1)求椭圆的方程;

2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,点B是椭圆C的短轴的一个端点,ΔOFB的面积为,椭圆C上的两点HG关于原点O对称,且的等差中项为2

1)求椭圆的方程;

2)是否存在过点M21)的直线与椭圆C交于不同的两点PQ,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由

查看答案和解析>>

同步练习册答案