精英家教网 > 高中数学 > 题目详情

【题目】【2017重庆二诊】已知函数,设关于的方程个不同的实数解,则的所有可能的值为( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

【答案】B

【解析】由已知, ,令,解得,则函数上单调递增,在上单调递减,极大值,最小值.

综上可考查方程的根的情况如下(附函数图):

(1)当时,有唯一实根;

(2)当时,有三个实根;

(3)当时,有两个实根;

(4)当时,无实根.

,则由,得

时,由

符号情况(1),此时原方程有1个根,

,而,符号情况(3),此时原方程有2个根,综上得共有3个根;

时,由,又

符号情况(1)或(2),此时原方程有1个或三个根,

,又,符号情况(3),此时原方程有两个根,

综上得共1个或3个根.

综上所述, 的值为1或3.故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,△ABC是边长为6的正三角形,设 (x,y∈R).

(1)若x=y=1,求| |;
(2)若 =36, =54,求x,y.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人一周5次乘车上班的时间(单位:分钟)分别为10,11,9,x,11,已知这组数据的平均数为10,那么这组数据的方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】政府鼓励创新、创业,银行给予低息贷款.一位大学毕业生向自主创业,经过市场调研、测算,有两个方案可供选择.
方案1:开设一个科技小微企业,需要一次性贷款40万元,第一年获利是贷款额的10%,以后每年比上一年增加25%的利润.
方案2:开设一家食品小店,需要一次性贷款20万元,第一年获利是贷款额的15%,以后每年比上一年增加利润1.5万元.两种方案使用期限都是10年,到期一次性还本付息.两种方案均按年息2%的复利计算(参考数据:1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).
(1)10年后,方案1,方案2的总收入分别有多少万元?
(2)10年后,哪一种方案的利润较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.

(1)求点的轨迹方程;

(2)设直线与直线的夹角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建三明5月质检】已知直线与抛物线相切,且与轴的交点为,点.若动点与两定点所构成三角形的周长为6.

() 求动点的轨迹的方程;

() 设斜率为的直线交曲线两点,当,且位于直线的两侧时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x),当x≥0时,f(x)=x2﹣3x.则关于x的方程f(x)=x+3的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017安徽阜阳二模】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.

(1)估计该技术指标值平均数

(2)在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分16)

设函数.

1)若=1时,函数取最小值,求实数的值;

2)若函数在定义域上是单调函数,求实数的取值范围;

3)若,证明对任意正整数,不等式都成立.

查看答案和解析>>

同步练习册答案