精英家教网 > 高中数学 > 题目详情
4.求二次函数y=ax2-1在-1≤x≤0上的最大值和最小值.

分析 判断函数的对称轴,通过a的讨论,求解函数的最值即可.

解答 解:二次函数y=ax2-1的对称轴为x=0,
当a>0时,二次函数y=ax2-1在-1≤x≤0上的最大值为:a-1,最小值为:-1.
当a<0时,二次函数y=ax2-1在-1≤x≤0上的最大值为:-1,最小值为:a-1.

点评 本题考查二次函数的性质的应用,二次函数闭区间上的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知sinα=$\frac{3}{5}$,α∈$(\frac{π}{2},π)$.
(1)求sin2α的值;
(2)求cos(α-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数y=f(x)满足:对任意x∈R,总有f(x)=f(4-x),且函数y=f(x)的图象过点(1,2)和(0,4),求函数y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A={x|x2-px-2=0},B={x|x2+qx+r=0},且A∪B={-2,1,5},问由已知条件能否确定p、q、r的值,试给予说明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=$\frac{{x}^{2}+a}{\sqrt{{x}^{2}+1}}$(a>0)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$,则数列的通项公式an=$\frac{{2}^{n}}{{2}^{n}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数y=ax2+bx+c同时满足下列条件:(1)对称轴x=1;(2)最大值为15;(3)二次函数的图象与x轴有两个交点,其横坐标的立方和为17.求此二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三点A(1,1)、B(5,3)、C(2,5).
(1)求直线AB上的中线l及AC边上的高所在的直线方程;
(2)设M是直线x+y-3=0上任意一点,求|MA|-|MB|取最大值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}满足下列条件,写出前5项,数列的一个通项公式.
(1)a1=2,an+1=3an+2;
(2)a1=2,an+1=3an+3
(3)a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$;
(4)a1=2,an+1=3an2

查看答案和解析>>

同步练习册答案