精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)当时,求曲线处的切线方程;

)若函数在定义域内不单调,求的取值范围

【答案】(1) ;(2) .

【解析】试题分析:(1)根据导数的几何意义得到 ,进而得到在处的切线方程为;(2)先求当函数单调时参数的范围,再求补集即可,函数在定义域内单调,等价于恒成立,或恒成立,即恒成立,或恒成立,等价于恒成立或恒成立,构造函数研究函数的单调性求函数最值即可.

解析:

函数的定义域为

导函数

)当时,因为

所以曲线处的切线方程为

设函数在定义域内不单调时 的取值范围是集合

函数在定义域内单调时 的取值范围是集合,则

所以函数在定义域内单调等价于恒成立恒成立,

恒成立恒成立,

等价于恒成立或恒成立

,则

,所以上单调递增;

,所以上单调递减

因为 ,且时,

所以

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若,求函数的单调区间;

(Ⅲ)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,函数.

(1)讨论的单调性;

(2)当时,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面六个句子中,错误的题号是________.

①周期函数必有最小正周期;

②若至少有一个为

为第三象限角,则

④若向量的夹角为锐角,则

⑤存在,使成立;

⑥在中,O内一点,且,则O的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,且圆与圆存在公共点,则圆与直线的位置关系是(  )

A. 相切B. 相离C. 相交D. 相切或相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列 满足: 的前项和为并规定.定义集合

(Ⅰ)对数列 ,求集合

(Ⅱ)若集合 ,证明:

(Ⅲ)给定正整数对所有满足的数列,求集合的元素个数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前n项和为,记 ,…, 中奇数的个数为

(Ⅰ)若= n,请写出数列的前5项;

(Ⅱ)求证:"为奇数, (i = 2,3,4,...)为偶数”是“数列是单调递增数列”的充分不必要条件;

(Ⅲ)若,i=1, 2, 3,…,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是  

A. 棱柱的侧面都是平行四边形

B. 所有面都是三角形的多面体一定是三棱锥

C. 用一个平面去截正方体,截面图形可能是五边形

D. 将直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的点与定点的距离与它到直线的距离的比是常数,又斜率为的直线与曲线交于不同的两点

(Ⅰ)求曲线的方程;

(Ⅱ)若,求 的最大值;

(Ⅲ)设,直线与曲线的另一个交点为,直线与曲线的另一个交点为.和点 共线,求的值。

查看答案和解析>>

同步练习册答案