【题目】已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范围.
【答案】(1)0,2, 3 (2)(2,4]
【解析】
试题(1)令可求得,令可求得,令可求得;(2)借助于(1)的结论将不等式转化为f[x(x-2)]≤f(8),借助于函数单调性和定义域可得到关于x的不等式,从而得到x的取值范围
试题解析:(1)f(1)=f(1)+f(1),∴f(1)=0,f(4)=f(2)+f(2)=1+1=2,
f(8)=f(2)+f(4)=2+1=3.
(2)∵f(x)+f(x-2)≤3,∴f[x(x-2)]≤f(8),又∵对于函数f(x)有x2>x1>0时f(x2)>f(x1),∴f(x)在(0,+∞)上为增函数.
∴2<x≤4.
∴x的取值范围为(2,4].
科目:高中数学 来源: 题型:
【题目】下列结论中正确的是( )
A.已知函数的定义域为,且在任何区间内的平均变化率均比在同一区间内的平均变化率小,则函数在上是减函数;
B.已知总体的各个个体的值由小到大依次为2,3,3,7,10,11,12,,18,20,且总体的平均数为10,则这组数的75%分位数为13;
C.方程的解集为;
D.一次函数一定存在反函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 在区间上单调递增,在区间上单调递减;如图,四边形中,,,为的内角的对边,
且满足.
(Ⅰ)证明:;
(Ⅱ)若,设,,
,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x﹣1)(a>0,且a≠1).
(1)若f(x)在[2,9]上的最大值与最小值之差为3,求a的值;
(2)若a>1,求不等式f(2x)>0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个几何体的平面展开图,其中四边形为正方形,,,,为全等的等边三角形,、分别为、的中点,在此几何体中,下列结论中正确的个数有()
①平面平面
②直线与直线是异面直线
③直线与直线共面
④面与面的交线与平行
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品13千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大,并求出最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com