精英家教网 > 高中数学 > 题目详情
4.设A、B两点是圆心都在直线x-y=0上的两个圆的交点,且A(-4,5).则点B的坐标为(5,-4).

分析 由题意可得另一个交点B是点A(-4,5)关于直线x-y+1=0的对称点,设点B(m,n),则利用垂直、和中点在对称轴上这两个条件求出m、n的值,可得结论.

解答 解:由题意可得另一个交点B是点(-4,5)关于直线x-y=0的对称点,
设点B(m,n),则由$\left\{\begin{array}{l}{\frac{n-5}{m+4}=-1}\\{\frac{m-4}{2}-\frac{n+5}{2}=0}\end{array}\right.$,求得m=5,n=-4,故点B的坐标为(5,-4),
故答案为:(5,-4).

点评 本题主要考查直线和圆相交的性质,求一个点关于某直线的对称点的坐标的方法,利用了垂直、和中点在对称轴上这两个条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知方程3-x+1-|lgx|=0的两根为x1,x2,且x1>x2,则x1,$\frac{1}{{x}_{1}}$,$\frac{1}{{x}_{2}}$的大小关系为$\frac{1}{{x}_{1}}$<x1<$\frac{1}{{x}_{2}}$.(用“<”号连接)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一系列函数的解析式和值域相同,但是定义域不同,则称这些函数为“同族函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]为“同族函数”.下面函数解析式中能够被用来构造“同族函数”的是①②④.(填序号)
①y=$\frac{1}{{x}^{2}}$;②y=|x|;③y=$\frac{1}{x}$;④y=x2+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点M(-2,0)的直线l与圆x2+y2=1交于A、B两点,则线段AB的中点P的轨迹的长度为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:x2=2y的焦点为F,P为抛物线C上任意一点,点M(-2,4m-2m+4),m∈R,则|MP|+|PF|的最小值为(  )
A.$\frac{5}{2}$B.$\frac{13}{4}$C.$\frac{9}{2}$D.$\frac{17}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线x-y-3=0与圆(x-1)2+y2=2的位置关系(  )
A.相离B.相切C.相交D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线l1:2x-y+3=0,l2:4x+8y+3=0的位置关系为(  )
A.相交不垂直B.垂直C.平行不重合D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sin($\frac{π}{4}$-θ)=$\frac{5}{13}$,0<θ<$\frac{π}{4}$,求cos2θ,cos($\frac{π}{4}$+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正数a,b,c满足b+c≥a,则$\frac{b}{c}$+$\frac{c}{a+b}$的最小值为$\sqrt{2}$-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案