精英家教网 > 高中数学 > 题目详情

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以)表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将表示为的函数;

(Ⅱ)根据直方图估计利润不少于57000元的概率.

【答案】(T=.()下一个销售季度的利润T不少于57000元的概率的估计值为0.7

【解析】试题分析:(I)由题意先分段写出,当X∈[100130)时,当X∈[130150)时,和利润值,最后利用分段函数的形式进行综合即可.

II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.再由直方图知需求量X∈[120150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.

解:(I)由题意得,当X∈[100130)时,T=500X﹣300130﹣X=800X﹣39000

X∈[130150]时,T=500×130=65000

∴T=

II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150

由直方图知需求量X∈[120150]的频率为0.7

所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校组织“中国诗词”竞赛,在“风险答题”的环节中,共为选手准备了三类不同的题目,选手每答对一个类、类或类的题目,将分别得到分, 分, 分,但如果答错,则相应要扣去分, 分, 分,根据平时训练经验,选手甲答对类、类或类的题目的概率分别为,若要每一次答题的均分更大一些,则选手甲应选择的题目类型应为_________.(填

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求的普通方程和的倾斜角;

(2)设点 交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

(2)证明: 上的增函数;

3)若对任意的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线交与 ,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面,四边形是菱形, ,且 交于点 上任意一点.

(1)求证:

(2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若曲线在点处的切线与轴垂直,求的值;

(Ⅱ)若函数有两个极值点,求的取值范围;

(Ⅲ)证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆 上一点轴作垂线,垂足为右焦点 分别为椭圆的左顶点和上顶点,且 .

(Ⅰ)求椭圆的方程;

(Ⅱ)若动直线与椭圆交于两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设为曲线在点处的切线,其中.

(Ⅰ)求直线的方程(用表示);

(Ⅱ)求直线轴上的截距的取值范围;

(Ⅲ)设直线分别与曲线和射线)交于 两点,求的最小值及此时的值.

查看答案和解析>>

同步练习册答案