精英家教网 > 高中数学 > 题目详情
已知函数y=Asin(ωt+φ)(其中A>0,ω>0,|φ|<
π
2
)的图象如图1所示,它刻画了质点P做匀速圆周运动(如图2)时,质点相对水平直线l的位置值y(|y|是质点与直线l的距离(米),质点在直线l上方时,y为正,反之y为负)随时间t(秒)的变化过程.则

(1)质点P运动的圆形轨道的半径为
 
米;
(2)质点P旋转一圈所需的时间T=
 
秒;
(3)函数f(t)的解析式为:
 

(4)图2中,质点P首次出现在直线l上的时刻t=
 
秒.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:(1)由图1可得A=2,可得质点P运动的圆形轨道的半径为2.
(2)质点P旋转一圈所需的时间T,即函数y=Asin(ωt+φ)的周期.把点(0,-1)代入函数的解析式求得φ;再把点(
2
3
,2)代入函数的解析式求得ω,可得函数的周期.
(3)由(2)中的φ、ω的值,可得f(t)的解析式.
(4)令f(t)=2sin(πt-
π
6
)=0,求得πt-
π
6
=kπ,k∈z,求得t的最小正值,即为所求.
解答: 解:(1)由图1可得A=2,故质点P运动的圆形轨道的半径为2,故答案为:2.
(2)质点P旋转一圈所需的时间T,即函数y=Asin(ωt+φ)的周期,
把点(0,-1)代入函数的解析式可得2sinφ=-1,可得sinφ=-
1
2
,再结合|φ|<
π
2
,可得φ=-
π
6

再把点(
2
3
,2)代入函数的解析式可得 2sin(ω•
2
3
-
π
6
)=2,即sin(ω•
2
3
-
π
6
)=1,(ω•
2
3
-
π
6
)=
π
2
,求得ω=π,
故函数的周期为
π
=2,
故答案为:2.
(3)由(2)可得f(t)=2sin(πt-
π
6
)

故答案为:f(t)=2sin(πt-
π
6
).
(4)令f(t)=2sin(πt-
π
6
)=0,求得πt-
π
6
=kπ,k∈z,可得t的最小正值为
1
6

故答案为:
1
6
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象和性质应用,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线x2-2y2=1的离心率是(  )
A、
3
B、
3
2
C、
6
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
16
=1上一点P到两焦点距离的乘积为m,当m取得最大值时,点P的坐标是(  )
A、(3,0)和(-3,0)
B、(0,3)和(0,-3)
C、(4,0)和(-4,0)
D、(0,4)和(0,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂接到一标识制作订单,标识如图所示,分为两部分,“T型”部分为宽为10cm 的两个矩形相接而成,圆面部分的圆周是A,C,D,F的外接圆.要求如下:①“T型”部分的面积不得小于800cm2;②两矩形的长均大于外接圆半径.为了节约成本,设计时应尽量减小圆面的面积.此工厂的设计师,凭直觉认为当“T型”部分的面积取800cm2且两矩形的长相等时,成本是最低的.你同意他的观点吗?试通过计算,说说你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图中,该程序运行后输出的结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(-
1
2
3
2
),其中α是锐角.
(Ⅰ)当α=30°时,求|
a
+
b
|;
(Ⅱ)证明:向量
a
+
b
a
-
b
垂直;
(Ⅲ)若向量
a
b
夹角为60°,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①在极坐标系中,圆ρ=cosθ与直线ρcosθ=1相切;
②在平面直角坐标系中,直线l的参数方程为
x=2+
t
2
y=3+
3
2
t
(t为参数),则它的倾斜角为
π
3

③不等式|x-1|+|x+2|≥5的解集为(-∞,-2]∪[3,+∞).
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线顶点在原点,有且只有一条直线l过焦点与抛物线相交于A,B两点,且|AB|=1,则抛物线方程为
 

查看答案和解析>>

同步练习册答案