精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=2sin(2ωx+$\frac{π}{6}$)+1(其中0<ω<1),若点(-$\frac{π}{6}$,1)是函数f(x)图象的一个对称中心,
(1)试求ω的值;
(2)先列表,再作出函数y=f(x-$\frac{π}{6}$)在区间[-π,π]上的图象.

分析 (1)由已知可得-$\frac{ωπ}{3}+\frac{π}{6}=kπ$,k∈Z,从而可解得ω的值.
(2)列表,描点,连线,由五点法作函数y=Asin(ωx+φ)的图象即可.

解答 解:f(x)=2sin(2ωx+$\frac{π}{6}$)+1
(1)∵点(-$\frac{π}{6}$,1)是函数f(x)图象的一个对称中心,
∴-$\frac{ωπ}{3}+\frac{π}{6}=kπ$,k∈Z,
∴ω=-3k+$\frac{1}{2}$,
∵0<ω<1
∴k=0,ω=$\frac{1}{2}$…(6分)
(2)由(1)知f(x)=2sin(x+$\frac{π}{6}$)+1,x∈[-π,π]
列表如下:

x+$\frac{π}{6}$-$\frac{5π}{6}$-$\frac{π}{2}$0$\frac{π}{2}$π$\frac{7π}{6}$
x-$\frac{2π}{3}$-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$π
y0-11310
…(9分)则函数f(x)在区间x∈[-π,π]上的图象如图所示

.…(12分)

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,五点法作函数y=Asin(ωx+φ)的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.cos$(\frac{-13π}{4})$的值为(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“a>$\frac{1}{4}$”是“关于x的不等式ax2-x+1>0恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a,b为实数,则“a5<b5”是“2a<2b”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将曲线$y=2sin(x+\frac{π}{3})$上所有点的横坐标伸长为原来的3倍,纵坐标不变,得到的曲线方程为(  )
A.$y=2sin(3x+\frac{π}{3})$B.y=2sin(3x+π)C.$y=2sin(\frac{1}{3}x+\frac{π}{3})$D.$y=2sin(\frac{1}{3}x+\frac{π}{9})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且sinAsinAcosC+sinCsinAcosA=$\frac{1}{3}$sinC,D为AC边上一点.
(1)若c=2b=4,S△BCD=$\frac{5}{3}$,求DC的长;
(2)若D是AC的中点,且cosB=$\frac{{2\sqrt{5}}}{5},BD=\sqrt{26}$,求△ABC的最短边的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某中学用校车接送教师上下班,从起点站出发后包括终点站一共停4个站,若在起点站上了5个人,中途没有人上车,每位老师在每个站下车的概率相等.若某站没有人下车,则校车就不停,车在终点站一定会停,起点站不算停车.
(1)求校车除终点站外只停一次的概率;
(2)设校车停车次数为ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2+x-2<0},$B=\left\{{x|{{log}_{\frac{1}{2}}}x>1}\right\}$,则A∩B=(  )
A.$(0,\frac{1}{2})$B.(0,1)C.$(-2,\frac{1}{2})$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a、b、c三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有(  )
A.96种B.124种C.130种D.150种

查看答案和解析>>

同步练习册答案