精英家教网 > 高中数学 > 题目详情

【题目】已知向量,且函数.若函数的图象上两个相邻的对称轴距离为.

(Ⅰ)求函数的解析式;

(Ⅱ)若方程时,有两个不同实数根,求实数的取值范围,并求出的值;

(Ⅲ)若函数的最大值为2,求实数的值.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)

【解析】

(Ⅰ)根据三角恒等变换公式化简,根据周期计算,从而得出的解析式;(Ⅱ)求出上的单调性,计算最值和区间端点函数值,从而得出的范围,根据对称性得出的值;(Ⅲ),求出的范围和关于的二次函数,讨论二次函数单调性,根据最大值列方程求出的值.

(Ⅰ)∵

若函数的图象上两个相邻的对称轴距离为

则函数的周期

,即

(Ⅱ)由(Ⅰ)知,

时,

∴若方程有两个不同实数根,则.

∴令,则

∴函数在内的对称轴为

是方程的两个不同根,

(Ⅲ)因为,所以

,则.∴

又∵,由

.

(1)当,即时,可知上为减函数,

则当

,解得:,不合题意,舍去.

(2)当,即时,结合图象可知,当时,

,解得,满足题意.

(3)当,即时,知上为增函数,

时,,由,舍去

综上,为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,函数.

(1) 若,求曲线处的切线方程;

(2)求函数单调区间

(3) 若有两个零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分时,才能使区平均每个分店的年利润最大?

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)设函数f(x)=|x﹣ |+|x﹣a|,x∈R,若关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值;
(2)已知正数x,y,z满足x+2y+3z=1,求 + + 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

平面直角坐标系xOy中,曲线C.直线l经过点Pm0),且倾斜角为O为极点,以x轴正半轴为极轴,建立极坐标系.

)写出曲线C的极坐标方程与直线l的参数方程;

)若直线l与曲线C相交于AB两点,且|PA·PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△中,,点边上,且.

(1)若,求

(2)若,求△的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的中点.

(1)求证:

(2)若点为四边形内部及其边界上的点,且三棱锥的体积为三棱柱体积的,试在图中画出点的轨迹,并说明理由.

查看答案和解析>>

同步练习册答案