精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx-数学公式
(I)若a>0,试判断f(x)在定义域内的单调性;
(II)若f(x)在[1,e]上的最小值为数学公式,求a的值;
(III)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

解:(I)由题意f(x)的定义域为(0,+∞),且f'(x)=…(2分)
∵a>0,
∴f'(x)>0,
故f(x)在(0,+∞)上是单调递增函数      …(4分)
(II)由(I)可知,f′(x)=
(1)若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,
∴[f(x)]min=f(1)=-a=
∴a=-(舍去) …(5分)
(2)若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,
∴[f(x)]min=f(e)=1-(舍去)…(6分)
(3)若-e<a<-1,令f'(x)=0得x=-a,当1<x<-a时,f'(x)<0,
∴f(x)在(1,-a)上为减函数,f(x)在(-a,e)上为增函数,
∴[f(x)]min=f(-a)=ln(-a)+1=
∴[f(x)]min=f(-a)=ln(-a)+1=
∴a=-.…(8分)
综上所述,a=-
(III)∵f(x)<x2
∴lnx-
又x>0,∴a>xlnx-x3…(9分)
令g(x)=xlnx-x3,h(x)=g′(x)=1+lnx-3x2
∴h'(x)=∵x∈(1,+∞)时,h'(x)<0,
∴h(x)在(1,+∞)上是减函数,…(10分)
∴h(x)<h(1)=-2<0
即g'(x)<0∴g(x)在(1,+∞)上也是减函数,
∴g(x)在(1,+∞)上是减函数
∴g(x)<g(1)=-1
∴当a≥-1时,f(x)<x2在(1,+∞)上恒成立.…(12分)
∴a≥-1
分析:(I)先确定函数f(x)的定义域,再求导函数,从而可判定f(x)在定义域内的单调性;
(II)由(I)可知,f′(x)=.再分类讨论:a≥-1,f(x)在[1,e]上为增函数;a≤-e,f(x)在[1,e]上为减函数;e<a<-1,f(x)在(1,-a)上为减函数,f(x)在(-a,e)上为增函数,利用f(x)在[1,e]上的最小值为,可求a的值;
(III)先将不等式整理,再分离参数,构建新函数,利用单调性求出函数值的范围,即可求出a的取值范围.
点评:本题重点考查函数的单调性,考查函数的最值,考查恒成立问题,解题的关键是运用导数,确定函数的单调性,运用分离参数法求解恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案