8£®´ÓÉç»áЧÒæºÍ¾­¼ÃЧÒæ³ö·¢£¬Ä³µØͶÈë×ʽð½øÐÐÉú̬»·¾³½¨É裬²¢ÒÔ´Ë·¢Õ¹ÂÃÓβúÒµ£¬´òËã±¾Äê¶ÈͶÈë800ÍòÔª£¬ÒÔºóÿÄêͶÈ뽫±ÈÉÏÄêƽ¾ù¼õÉÙ20%£¬±¾Äê¶ÈÂÃÓÎÊÕÈëΪ400ÍòÔª£¬ÓÉÓÚ¸ÃÏÉè¶ÔÂÃÓεĴٽø×÷Óã¬Ô¤¼Æ½ñºóµÄÂÃÓÎÒµÊÕÈëÿÄê»á±ÈÉÏÄêƽ¾ùÔö¼Ó25%£®
£¨¢ñ£©ÉèµÚnÄ꣨±¾Äê¶ÈΪµÚÒ»Ä꣩µÄͶÈëΪanÍòÔª£¬ÂÃÓÎÒµÊÕÈëΪbnÍòÔª£¬Ð´³öan£¬bnµÄ±í´ïʽ£»
£¨¢ò£©ÖÁÉÙ¾­¹ý¼¸ÄêÂÃÓÎÒµµÄ×ÜÊÕÈ볬¹ý×ÜͶÈ룿

·ÖÎö £¨¢ñ£©ÒÀÌâÒâÿÄêͶÈë¹¹³ÉÊ×ÏîΪ800ÍòÔª£¬¹«±ÈΪ$\frac{4}{5}$µÄµÈ±ÈÊýÁУ¬Ã¿ÄêÂÃÓÎÒµÊÕÈë×éÖ¯Ê×ÏîΪ400ÍòÔª£¬¹«±ÈΪ$\frac{5}{4}$µÄµÈ±ÈÊýÁУ¬½ø¶øÇó³öan£¬bnµÄ±í´ïʽ£®
£¨¢ò£©ÏÈÉèÖÁÉÙ¾­¹ýnÄêÂÃÓÎÒµµÄ×ÜÊÕÈë²ÅÄܳ¬¹ý×ÜͶÈ룬ÓÉbn-an£¾0£¬½âµÃnµÄÈ¡Öµ·¶Î§¼´¿É£®

½â´ð £¨¢ñ£©½â£¬ÒÀÌâÒâÿÄêͶÈë¹¹³ÉÊ×ÏîΪ800ÍòÔª£¬¹«±ÈΪ$\frac{4}{5}$µÄµÈ±ÈÊýÁУ¬Ã¿ÄêÂÃÓÎÒµÊÕÈë×éÖ¯Ê×ÏîΪ400ÍòÔª£¬¹«±ÈΪ$\frac{5}{4}$µÄµÈ±ÈÊýÁУ®
ËùÒÔ£¬${a_n}=800•{£¨\frac{4}{5}£©^{n-1}}£¬\;{b_n}=400{£¨\frac{5}{4}£©^{n-1}}$£¬
£¨¢ò£©½â£¬¾­¹ýnÄ꣬×ÜÊÕͶÈë${s_n}=\frac{{800£¨1-{{£¨\frac{4}{5}£©}^n}£©}}{{1-\frac{4}{5}}}=4000£¨1-{£¨\frac{4}{5}£©^n}£©$£¬
¾­¹ýnÄ꣬×ÜÊÕÈë${T_n}=\frac{{400£¨1-{{£¨\frac{5}{4}£©}^n}£©}}{{1-\frac{5}{4}}}=1600£¨{£¨\frac{5}{4}£©^n}-1£©$£¬
Éè¾­¹ýnÄ꣬×ÜÊÕÈ볬¹ý×ÜͶÈ룬ÓÉ´Ë£¬Tn-Sn£¾0£¬$1600£¨{£¨\frac{5}{4}£©^n}-1£©$$-4000£¨1-{£¨\frac{4}{5}£©^n}£©$£¾0£¬
»¯¼òµÃ     $5•{£¨\frac{4}{5}£©^n}+2•{£¨\frac{5}{4}£©^n}-7£¾0$£¬
Éè$x={£¨\frac{4}{5}£©^n}$´úÈëÉÏʽÕûÀíµÃ£¬5x2-7x+2£¾0£¬
½âµÃ£¬$x£¼\frac{2}{5}$£¬»òx£¾1£¨ÉáÈ¥£©£¬
ÓÉ${£¨\frac{4}{5}£©^n}£¼\frac{2}{5}$£¬n=4ʱ£¬${£¨\frac{4}{5}£©^n}$=$\frac{256}{625}$$£¾\frac{2}{5}$£¬n=5£¬${£¨\frac{4}{5}£©^n}$=$\frac{1024}{3125}£¼\frac{2}{5}$£¬
ÒòΪ $y={£¨\frac{4}{5}£©^x}$ÔÚ¶¨ÒåÓòÉÏÊǼõº¯Êý£¬ËùÒÔ n¡Ý5£¬
´ð£ºÖÁÉÙ¾­¹ý5ÄêÂÃÓÎÒµµÄ×ÜÊÕÈ볬¹ý×ÜͶÈ룮

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éÊýÁеĻù±¾Ó¦Óá¢ÊýÁÐÇóºÍ¡¢²»µÈʽµÈ»ù´¡ÖªÊ¶£»¿¼²é×ÛºÏÔËÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚ¡÷ABCÖУ¬a=3£¬b=5£¬c=7£¬ÄÇôÕâ¸öÈý½ÇÐεÄ×î´ó½ÇÊÇ£¨¡¡¡¡£©
A£®135¡ãB£®150¡ãC£®90¡ãD£®120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ô²x2+y2=1ÔÚÉìËõ±ä»»$\left\{\begin{array}{l}x'=2x\\ y'=3y\end{array}\right.$µÄ×÷ÓÃÏ£¬ËùµÃ·½³ÌÊÇ£¨¡¡¡¡£©
A£®4x¡ä2+9y¡ä2=1B£®$\frac{{{{x'}^2}}}{2}+\frac{{{{y'}^2}}}{3}=1$C£®$\frac{{{{x'}^2}}}{9}+\frac{{{{y'}^2}}}{4}=1$D£®$\frac{{{{x'}^2}}}{4}+\frac{{{{y'}^2}}}{9}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚ¡÷ABCÖУ¬A¡¢BΪÈñ½Ç£¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢a£¬ÇÒ$a-b=\sqrt{2}-1$£¬$sinA=\frac{{\sqrt{5}}}{5}$£¬$sinB=\frac{{\sqrt{10}}}{10}$£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©Çó½ÇCºÍ±ßcµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚÈýÀâ׶A-BOCÖУ¬OA¡Íµ×ÃæBOC£¬¡ÏOAB=¡ÏOAC=30¡ã£¬AB=AC=4£¬BC=2$\sqrt{2}$£¬¶¯µãDÔÚÏ߶ÎABÉÏ£®
£¨1£©ÇóÖ¤£ºÆ½ÃæCOD¡ÍƽÃæAOB£»
£¨2£©µ±OD¡ÍABʱ£¬ÇóÈýÀâ׶C-OBDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÔÔ­µã£¨0£¬0£©ÎªÔ²ÐÄ£¬ÇÒÓëÖ±Ïßx+y-2=0ÏàÇеÄÔ²µÄ·½³ÌΪx2+y2=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ£º$\left\{{\begin{array}{l}{x¡Ýy}\\{y¡Ý1}\\{x+y¡Ü4}\end{array}}\right.$µÄ¿ÉÐÐÓòΪM£»
£¨1£©ÔÚËù¸øµÄ×ø±êϵÖл­³ö¿ÉÐÐÓòM£¨ÓÃÒõÓ°±íʾ£¬²¢×¢Ã÷±ß½çµÄ½»µã£©£»
£¨2£©Çóz=y-2xµÄ×î´óÖµÓë×îСֵ£»
£¨3£©ÉèµãPΪԲx2+£¨y-3£©2=1ÉϵĶ¯µã£¬QΪ¿ÉÐÐÓòMÉϵĶ¯µã£¬Çó|PQ|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÏòÁ¿$\overrightarrow{OA}$=£¨2£¬2£©£¬$\overrightarrow{OB}$=£¨4£¬1£©£¬ÔÚxÖáÉÏÓÐÒ»µãP£¬Ê¹$\overrightarrow{AP}$•$\overrightarrow{BP}$ÓÐ×îСֵ£¬ÔòPµã×ø±êΪ£¨¡¡¡¡£©
A£®£¨-3£¬0£©B£®£¨3£¬0£©C£®£¨2£¬0£©D£®£¨4£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Éè2a=3£¬2b=6£¬2c=12£¬ÔòÊýÁÐa£¬b£¬cÊÇ£¨¡¡¡¡£©
A£®ÊǵȲîÊýÁУ¬µ«²»ÊǵȱÈÊýÁÐB£®ÊǵȱÈÊýÁУ¬µ«²»ÊǵȲîÊýÁÐ
C£®¼ÈÊǵȲîÊýÁУ¬ÓÖÊǵȱÈÊýÁÐD£®·ÇµÈ²îÊýÁУ¬ÓַǵȱÈÊýÁÐ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸