精英家教网 > 高中数学 > 题目详情
0<x<
π
2
,则下列命题正确的是(  )
A、sinx<
2
π
x
B、sinx>
2
π
x
C、sinx<
3
π
x
D、sinx>
3
π
x
分析:通过特殊值代入解题,可迅速排除错误选项.
解答:解:取x=
π
6
?sinx=
1
2
,右边
2
π
×
π
6
=
1
3
3
π
×
π
6
=
1
2

显然A、C、D不正确,
故选B
点评:要学会用此类巧妙方法解题,提高解题效率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知函数f(x)=a|x|+
2
ax
(a>0,a≠1)

(Ⅰ)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(Ⅱ)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.
(2)已知函数f(x)=lnx-mx+m,m∈R.
(I)求函数f(x)的单调区间;
(Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,任意的0<a<b,求证:
f(b)-f(a)
a-b
1
a(1+a)
.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某校5个学生的数学和物理成绩如下表
学生的编号i 1 2 3 4 5
数学xi 80 75 70 65 60
物理yi 70 66 68 64 62
(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?
(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y表示物理成绩,求y与x的回归方程;
(3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
参考数据和公式:
?
y
=bx+a
,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a=
.
y
-b
.
x
5
i=1
xiyi=23190,
5
i=1
x
2
i
=24750

残差和公式为:
5
i=1
(yi-
?
y
i
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,则称f(x)为定义在D上的下凸函数.
(1)试判断函数g(x)=2x(x∈R),k(x)=
1x
 (x<0)
是否为各自定义域上的下凸函数,并说明理由;
(2)若h(x)=px2(x∈R)是下凸函数,求实数p的取值范围;
(3)已知f(x)是R上的下凸函数,m是给定的正整数,设f(0)=0,f(m)=2m,记Sf=f(1)+f(2)+f(3)+…+f(m),对于满足条件的任意函数f(x),试求Sf的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若0<x<,设a=2-xsinx,b=cos2x,则下式正确的是(    )

A.a≥b                   B.a=b                   C.a<b                 D.a>b

查看答案和解析>>

科目:高中数学 来源:同步题 题型:单选题

函数f(x)=xa,x∈(-1,0)∪(0,1),若不等式f(x)>|x|成立,则在a∈{-2,-1,0,1,2}的条件下,a可以取值的个数是
[     ]
A.0
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案