精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(1)求的解析式对称轴及对称中心.

(2)该图象可以由的图象经过怎样的变化得到.

(3)当,求的值域.

【答案】(1)见解析;(2);(3)

【解析】

(1)根据函数的图象与性质,现确定周期得出的值,再确定振幅得到A的值,最后代入点的坐标,求解的值,即可得到函数的解析式;

(2)根据三角函数图象的平移变换和伸缩变换,即可得到求解;

(3)由,求得,得到函数的最大值与最小值,即可得到函数的值域

解:(1)由题意,图象与轴相邻两个交点直接距离为

可得

又∵图象上一个最低点为,且

又∵

因此,

对称轴:∵

∴对称轴方程为

对称中心:∵

∴函数的对称中心为

(2)将的图象向左平移,得到,再将横坐标缩小原来的

纵坐标不变得到,再横坐标不变,纵坐标伸长为原来的倍得到

(3)当,则

∴当时,即

时,即

故得的值域是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面与平面交于直线是平面内不同的两点,是平面内不同的两点,且不在直线上,分别是线段的中点,下列命题中正确的个数为( )

①若相交,且直线平行于时,则直线也平行;

②若是异面直线时,则直线可能与平行;

③若是异面直线时,则不存在异于的直线同时与直线都相交;

两点可能重合,但此时直线不可能相交

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中,a1=2,a3+2a2a4的等差中项.

(1)求数列的通项公式;

(2)log2,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,平面AED⊥平面ABNCD,EF∥AB,AB=2,BC=EF=1,AE= ,∠BAD=60°,G为BC的中点.
(1)求证:FG∥平面BED;
(2)求证:平面BED⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形, 底面 的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC△VAB为等边三角形,AC⊥BCAC=BC=OM分别为ABVA的中点.

1)求证:VB∥平面MOC

2)求证:平面MOC⊥平面VAB

3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题

①方程有一个正实根,一个负实根,则

②函数是偶函数,但不是奇函数;

③命题,则的否命题为,则”;

④命题,使得的否定是,都有”;

的充分不必要条件.

正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,且a3 , a5 , a15成等比数列,若a1=3,Sn为数列an的前n项和,则anSn的最小值为(
A.0
B.﹣3
C.﹣20
D.9

查看答案和解析>>

同步练习册答案