分析 根据两向量的夹角余弦值公式,列出方程求出λ的值即可.
解答 解:因为$\overrightarrow{a}$•$\overrightarrow{b}$=2-λ+2=4-λ,
|$\overrightarrow{a}$|=$\sqrt{2{+λ}^{2}}$,|$\overrightarrow{b}$|=$\sqrt{{2}^{2}{+(-1)}^{2}{+2}^{2}}$=3,
且夹角的余弦值为$\frac{\sqrt{3}}{3}$,
所以$\frac{4-λ}{3\sqrt{2{+λ}^{2}}}$=$\frac{\sqrt{3}}{3}$,
化简得λ2+4λ-5=0,
解得λ=-5或1.
故答案为:-5或1.
点评 本题考查了利用两向量的夹角余弦公式列方程求解的问题,是基础题目.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | sinB+sinC为常数 | B. | cosB+cosC为常数 | C. | tanB+tanC为常数 | D. | sinB+cosC为常数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com