精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面,点在线段上,且为线段的中点.

(1)求证:平面

(2)若,求三棱锥的体积.

【答案】(1)见解析(2)

【解析】

(1)设ACBDO,连接PO,通过证明EF为△POC的中位线,推出EFPO,然后EF∥平面PBD

(2)利用VFPADVCPADVPCAD,求解几何体的体积即可.

(1) ∵AB=AD,CB=CD,∴AC⊥BD,设AC∩BD=O,连接PO,

由AB=AD=2,∠BAD=120

得:OA=1,BD=2,在RtCOD中,CD=, OD=

∴OC=2

∵AE=2EC,

∴E为OC中点

又∵F为PC的中点

∴EF为POC的中位线

∴EF∥PO

又PO面PBD EF面PBD

∴EF∥平面PBD

(2)在Rt△PAC中,PC=5,由(1)可知AC=3,∴PA=4

∴VF-PAD=VC-PAD=VP-CAD=×VP-ABCD=×××3×2×4=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2pxp>0)上的点A(4,t)到其焦点F的距离为5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)过点F作直线l,使得抛物线C上恰有三个点到直线1的距离为2,求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求曲线在点处的切线方程;

(2)记的导函数为,若不等式在区间上恒成立,求的取值范围;

(3)设函数是函数的导函数,若存在两个极值点,且满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若内单调递减,求实数的取值范围;

(Ⅱ)若函数有两个极值点分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的单调区间;

(2)如果对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

(Ⅰ)求实数的值;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线C及其准线分别交于MN两点,F为抛物线的焦点,若,则m等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一士兵要在一个半径为的圆形区域内检查是否埋有地雷,他所用的检查仪器的有效作用范围的半径为求该士兵从该圆边界上一点出发,至少需走多少米才能将区域检测完,且回到出发点?

查看答案和解析>>

同步练习册答案