精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 ,与轴不重合的直线经过左焦点,且与椭圆相交于 两点,弦的中点为,直线与椭圆相交于 两点.

(Ⅰ)若直线的斜率为1,求直线的斜率;

(Ⅱ)是否存在直线,使得成立?若存在,求出直线的方程;若不存在,请说明理由.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析: (Ⅰ)求出直线的方程,与椭圆联立,解出中点的坐标,进而求出直线的斜率. (Ⅱ)假设存在直线,使得成立.当直线的斜率不存在时不成立,斜率存在时联立直线与椭圆方程,根据韦达定理写出弦长的表达式以及中点的坐标, 直线的方程联立椭圆的方程,得点坐标,则可求出,又,将坐标代入解出,即可求出直线的方程.

试题解析:(Ⅰ)由已知可知,又直线的斜率为1,所以直线的方程为

解得

所以中点

于是直线的斜率为

(Ⅱ)假设存在直线,使得成立. 

当直线的斜率不存在时, 的中点

所以 ,矛盾;

故可设直线的方程为,联立椭圆的方程,

,则

于是

的坐标为

.

直线的方程为,联立椭圆的方程,得

,则

由题知,

化简,得,故

所以直线的方程为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的棱形,且分别是的中点.

(1)证明:平面

(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且a2+bc=b2+c2
(1)求∠A的大小;
(2)若b=2,a= ,求边c的大小;
(3)若a= ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,并且直线平分圆.

)求圆的方程;

)若过点,且斜率为的直线与圆有两个不同的交点.

)求实数的取值范围;

)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数

(Ⅰ)判断是否为函数的极值点,并说明理由;

(Ⅱ)若在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,是等比数列,且,则下列结论正确的是( )

A. B.

C. D. ,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且为等比数列.

(1)求数列的通项公式;

(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点是,并且经过点,抛物线的顶点在坐标原点,焦点恰好是椭圆的右顶点.

求椭圆和抛物线的标准方程;

已知点为抛物线内一个定点,过作斜率分别为的两条直线交抛物线于点,且分别是的中点,若,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列{an},定义 为{an}的“优值”,现在已知某数列{an}的“优值” ,记数列{an﹣kn}的前n项和为Sn , 若Sn≤S5对任意的n∈N+恒成立,则实数k的最大值为

查看答案和解析>>

同步练习册答案