精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{a{x}^{2}+1}{bx}$(b>0)
(1)求f(x)的单调递减区间;
(2)如果对任意的x>0,都有f(x)≥f(1)=2成立,求|[f(x)]3|-|f(x3)|,(x≠0)的最小值;
(3)若a>0,x1+x2>0,x2+x3>0,x3+x1>0,|xi|$>\frac{1}{\sqrt{a}}$(i=1,2,3),证明:f(x1)+f(x2)+f(x3)>$\frac{2\sqrt{a}}{b}$.

分析 (1)先求出函数的导数,通过讨论a的范围,确定函数的单调区间即可
(2)先求出a,b的值,求出函数的解析式,从而求出代数式的最小值即可;
(3)通过讨论①x1,x2,x3都为正数时,②当x1,x2,x3为有一个为负数时的情况,从而证出结论.

解答 解:(1)∵f′(x)=$\frac{{ax}^{2}-1}{{bx}^{2}}$,首先x≠0,
∴①当a≤0时,令f′(x)<0,得:ax2-1<0,
∵a≤0,
∴x的单调递减区间为(-∞,0)∪(0,+∞);
②当a>0时,令f′(x)<0,
ax2-1<0,ax2<1,x2<$\frac{1}{a}$,
∵a>0,
∴x的单调递减区间为(-$\frac{1}{\sqrt{a}}$,0)∪(0,$\frac{1}{\sqrt{a}}$),
∴当a≤0,x的单调递减区间为(-∞,0)∪(0,+∞);
a>0,x的单调递减区间为(-$\frac{1}{\sqrt{a}}$,0)∪(0,$\frac{1}{\sqrt{a}}$),
(2)∵对?x>0,都有f(x)>f(1)=2,
∴根据上问分析a不可能≤0,
∴a>0,∴$\frac{1}{\sqrt{a}}$=1,∴a=1,
∵f(1)=$\frac{a+1}{b}$=2,∴b=1,
∴f(x)=$\frac{{x}^{2}+1}{x}$=x+$\frac{1}{x}$,
|[f(x)]3|-|f(x3)|=3x+$\frac{3}{x}$≥2×3=6;
(3)由条件知道x1,x2,x3最多有一个负数,
①当x1,x2,x3都为正数时,由第一问可知:
f(xi)>f($\frac{1}{\sqrt{a}}$)=$\frac{2\sqrt{a}}{b}$,
∴f(x1)+f(x2)+f(x3)≥$\frac{6\sqrt{a}}{b}$>$\frac{2\sqrt{a}}{b}$,
②当x1,x2,x3为有一个为负数时,不妨设x3<0,
∵x2+x3>0,|x3|<$\frac{1}{\sqrt{a}}$,
∴x2>-x3>$\frac{1}{\sqrt{a}}$,
∴f(x2)>f(-x3),
∵f(x)为奇函数,
∴f(x2)+f(x3)>0,
∵f(x1)>$\frac{2\sqrt{a}}{b}$,
∴f(x1)+f(x2)+f(x3)>$\frac{2\sqrt{a}}{b}$.

点评 本题考查了导数的应用,考查函数的单调性问题,考查不等式的证明,是一道难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,已知向量$\overrightarrow{a}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(cosx,sinx),$x∈({-\frac{π}{2},\frac{π}{2}})$.
(I)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求tanx的值;
(II)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为(  )
A.{-2,0,4}B.{-2,0,2,4}C.$\left\{{\left.{y\left|{y≥}\right.-\frac{9}{4}}\right\}}\right.$D.{y|0≤y≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=logax(a>0且a≠1),且函数的图象过点(2,1).
(1)求函数f(x)的解析式;
(2)若f(m2-m)<1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=3sin(ωx+φ)(|φ|<\frac{π}{2})$的最小正周期为π,且f(x)的图象经过点$(-\frac{π}{6},0)$.则函数f(x)的图象的一条对称轴方程为(  )
A.$x=\frac{5π}{12}$B.$x=-\frac{π}{12}$C.$x=-\frac{5π}{12}$D.$x=\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{AB}$、$\overrightarrow{AC}$是非零向量且满足($\overrightarrow{AB}-$2$\overrightarrow{AC}$)⊥$\overrightarrow{AB}$,($\overrightarrow{AC}$-2$\overrightarrow{AB}$)$⊥\overrightarrow{AC}$,则∠A等于(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=20.3,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log2$\frac{2}{3}$,则a、b、c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn=an-1(a>0,且a≠1),且6a1,a3,a2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n+1}}{({a}_{n}+1)({a}_{n+1}+1)}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式(m+1)x2-4x+1≤0(m∈R)

查看答案和解析>>

同步练习册答案