【题目】某单位决定建造一批简易房(房型为长方体状,房高2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即:钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元.房顶用其它材料建造,每平方米材料费为200元.每套房材料费控制在32000元以内.
(1)设房前面墙的长为x,两侧墙的长为y,所用材料费为p,试用x,y表示p;
(2)在材料费的控制下简易房面积S的最大值是多少?并指出前面墙的长度x应为多少米时S最大.
科目:高中数学 来源: 题型:
【题目】下列说法中,所有正确的序号有( )
①在同一坐标系中,函数y=2x与函数y=log2x的图象关于直线y=x对称;
②函数f(x)=ax+1(a>0,且a≠1)的图象经过定点(0,2);
③函数 的最大值为1;
④任取x∈R,都有3x>2x .
A.①②③④
B.②
C.①②
D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的一个顶点为A(2,0),离心率为 ,直线y=k(x﹣1)与椭圆C交于不同的两点 M,N.
(1)求椭圆C的方程,并求其焦点坐标;
(2)当△AMN的面积为 时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD-A′B′C′D′中:
(1)求二面角D′-AB-D的大小;
(2)若M是C′D′的中点,求二面角M-AB-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上且以2为周期的偶函数,当0≤x≤1,f(x)=x2 . 如果函数g(x)=f(x)﹣(x+m)有两个零点,则实数m的值为( )
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求圆心在直线 x 2 y 3 = 0 上,且过点A(2,-3),B(-2,-5)的圆C的方程.
(1)求圆心在直线 上,且过点A(2,-3),B(-2,-5)的圆C的方程.
(2)设 是圆C上的点,求 的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,两个正方形 和 所在平面互相垂直,设 分别是 和 的中点,那么
① ; ② 平面 ;③ ;④ 异面,其中假命题的个数为( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点H(x0 , y0)在圆C:x2+y2+Dx+Ey+F=0(其中点C为圆心,D2+E2﹣4F>0)外,由点H向圆C引切线,其中一个切点为M.
求证:|HM|= ;
(1)已知点H(x0 , y0)在圆C:x2+y2+Dx+Ey+F=0(其中点C为圆心,D2+E2﹣4F>0)外,由点H向圆C引切线,其中一个切点为M.
求证:|HM|= ;
(2)如图,P是直线x=4上一动点,以P为圆心的圆P经定点B(1,0),直线l是圆P在点B处的切线,过A(﹣1,0)作圆P的两条切线分别与l交于E,F两点.
求证:|EA|+|EB|为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com